
Managing IoT Devices using Blockchain Platform

Seyoung Huh*, Sangrae Cho*, Soohyung Kim*

*ETRI, Daejeon, South Korea

one@etri.re.kr, sangrae@etri.re.kr, lifewsky@etri.re.kr

Abstract — Since the start of Bitcoin in 2008[1], blockchain

technology emerged as the next revolutionary technology.

Though blockchain started off as a core technology of Bitcoin, its

use cases are expanding to many other areas including finances,

Internet of Things (IoT), security and such[2]. Currently, many

private and public sectors are diving into the technology[3].

Aside from that, as software and hardware improve, we would

see the beginning of IoT. And those IoT devices need to

communicate and synchronize with each other. But in situations

where more than thousands or tens of thousands of IoT devices

connected, we expect that using current model of server-client

may have some limitations and issues while in synchronization.

So, we propose using blockchain to build IoT system. Using

blockchain, we can control and configure IoT devices. We

manage keys using RSA public key cryptosystems where public

keys are stored in Ethereum and private keys are saved on

individual devices. Specifically, we choose Ethereum as our

blockchain platform because using its smart contract, we can

write our own Turing-complete code to run on top of Ethereum.

Thus, we can easily manage configuration of IoT devices and

build key management system. Even though we can simply use

account as a key management system, which most of blockchain

platform supports, we decide to use Ethereum because we can

manage the system in a more fine-grained way. For the proof of a

concept, we use a few IoT devices instead of a full system of IoT

system, which consists of thousands of IoT devices. But in our

later study, we would like to build a fully scaled IoT system using

blockchain.

Keywords— Blockchain, IoT, Ethereum, Key Management,

Information & Network Security, Authentication, Smart

Contract

I. INTRODUCTION

Since the emergence of Bitcoin in 2008 initiated by Satoshi

Nakamoto[4], many people invested or speculated on Bitcoin.

While Bitcoin itself has an economic, philosophical, and

technical significance, all of those revolutions could not be

possible without blockchain, distributed ledger, which is a

pivotal part of Bitcoin. After success of Bitcoin, many other

cryptocurrencies emerged[5], which obviously is built on top

of blockchain technology. Not only cryptocurrencies, but also

other fields are adapting blockchain[6]. Also, while Bitcoin

was a great success, it has some limitations[7]. First of all, its

block generation period is about ten minutes[8], which is

relatively long to make transactions. Second, while it can keep

track of transactions as UTXO[9](Unspent Transaction

Outputs) and supports scripting[10], it cannot use loops. In

other words, it is not Turing complete[10,11]. With these

limitations in mind, Ethereum comes into play. Ethereum with

approximately 12 second block period[11] lets developers

write smart contract[12]. In other words, developers can write

a program that can run on top of Ethereum. Given that it is

running on blockchain, developers and users can assume that

it cannot be modified without permission and is transparent

across Ethereum. Simply put, we can think of Ethereum as a

massive shared computing system.

Using Ethereum, we can configure IoT devices. We can

manage public key infrastructure in order to authenticate. IoT

devices can rely on Ethereum for updating their behaviour. As

the era of IoT started, many domains are adapting IoT[13].

Places where more than hundreds of devices need to be

connected such as factories are attempting to use such

technology[14]. But there are some issues. First, given there

are more than hundreds of devices interconnected, it is a

hassle to synchronize all of devices. Second of all, just like

any other server-client model, if server is vulnerable, all of

relying devices will be in trouble. However using blockchain

on IoT, IoT devices can synchronize easily with other devices

because of its distributed ledger. Also, using its consensus

algorithm, it will be hard to forge data in the blockchain or

accomplish denial of service (DOS) attack unless there are

innate issues such as problems with OPCODE[15].

Thus we propose using Ethereum on managing IoT devices.

Using smart contract on Ethereum, we can write a code that

defines behaviours of IoT devices. We can also build public

key infrastructure on smart contract so malicious attackers

cannot control over the management system on Ethereum. In

the beginning, we start a proof of concept, which includes a

few IoT devices using Raspberry Pi and a smartphone. Once

we complete the model, we would like to build fully-scaled

IoT system using Ethereum.

II. RELATED WORK

A. Ethereum

Proposed by Vatalik Buterin in 2013, Ethereum is a public

blockchain-based distributed computing platform[7,16,18].

Unlike previous blockchain such as Bitcoin, it can work as a

computer even though the performance will be slower than

most of current PCs since it has a transaction time of around

12 seconds. But, because it has its own language such as

Solidity or Serpent[13], it lets developers write and compile a

program. Once compiled, it can run on Ethereum Virtual

Machine[14]. Just like any other computing environment,

once it gets compiled, compiled code gets translated to opcode

and then binary, which will be executed on Ethereum Virtual

464International Conference on Advanced Communications Technology(ICACT)

ISBN 978-89-968650-8-7 ICACT2017 February 19 ~ 22, 2017

mailto:one@etri.re.kr
mailto:sangrae@etri.re.kr
mailto:lifewsky@etri.re.kr

Machine environment. Thus Ethereum is unique in a sense

that it combines computing system with blockchain. It is

ground-breaking because it gives developers flexibility to

write a code that can run on blockchain. Because it will be

difficult to maliciously manipulate or tamper the code, users

who rely on the written code are almost guaranteed that it will

behave as they expect it to. Even though attacks such as DAO

or computational denial of service happened recently, it was

due to vulnerabilities of smart contract code or opcode gas

price not vulnerabilities on fundamentals of blockchain or

Ethereum itself. Thus once system is stabilized and matures, it

would become a stronger system.

Given that the system is stabilized, it can be used in wide

ranges of domain. Due to its transparency because people can

look at its publicly available logic or code of smart contracts,

betting or gambling service can be implemented and used.

Voting service can easily be implemented with strong

certainty that the result is not manipulated or forged. Thus

there are many companies, industries, and people who are

trying to find their own use cases of Ethereum[17].

III. MANAGING IOT DEVICES USING ETHEREUM

In this section, we would like to discuss how we can

manage IoT devices using Ethereum.

A. Scenario

As mentioned previously, we used a few IoT devices

instead of hundreds of devices in order to make a proof of a

concept. More specifically, we use a smart phone, and three

Raspberry Pis. For three Raspberry Pis, we treat each of them

as a meter to keep track of electricity usage, an air conditioner,

and a lightbulb since using actual device such as air

conditioner would require too much overhead. Using smart

phone, user can set up the policy. For example, user can set

devices to turn on energy saving mode when electricity usage

hits 150 KW. When the user sets up the configuration via

smartphone, the data is sent to the Ethereum network. In the

meantime, devices such as lightbulb or air conditioner are

retrieving values of policy periodically from Ethereum. Also

meter keeps track of electricity usage and updates it on

Ethereum. Thus three different processes are happening

concurrently. The below image is shown as a diagram of our

scenario.

Figure 1. Diagram of Ethereum IoT Scenario

B. Ethereum Model

Unlike server-client model, Ethereum is a distributed

computing platform[7,16,18], which means all of

participating entities contain parts of blockchain of

Ethereum. Though Figure 1 looks similar to server-client

model for simplicity, actual model looks different in a sense

that each contributing entity of blockchain contains

blockchain partially or entirely. Instead of sending to server,

each device updating or making transactions contains

Ethereum as shown in figure 2.

Figure2. Diagram of Devices connected to Ethereum

Because blockchain is partially contained in contributing

devices, we know that transactions are executed and stored via

consensus algorithm, which means attackers cannot forge or

tamper data easily. Leveraging this characteristic lets us to

build IoT system, which is strong enough to stand against

many denial of service attacks and forgery attacks, if not all.

Even though we are given only a few devices for this paper,

we believe it will be possible to synchronize hundreds of

devices.

C. Smart Contract

One of the most significant aspects of Ethereum lies in

smart contract. The concept first introduced by Nick Szabo in

1994[19], smart contract brought innovation to blockchain.

Ethereum uses smart contract on top of blockchain so that

developers can write a program on blockchain. In other words,

using smart contract, we can use Ethereum as a computing

platform. There are programming languages such as Solidity,

Serpent, and LLL in Ethereum[20]. At this point, solidity is

the most widely used language and compiler[20]. This high

level language once developed is compiled into byte codes.

And those byte codes are deployed onto Ethereum. And since

byte codes are simply a list of opcodes, Ethereum nodes

follow those instructions in the code once the corresponding

contract is executed from valid account.

For our experiment, we wrote three smart contracts. We

wrote one contract tracking the value of meter. And we wrote

one for saving policy values of each air conditioner and

lightbulb. In order to authenticate valid account, we also

added signature and public key on both contracts. Thus, if

malicious attackers try to manipulate the storage in smart

contracts, computing systems in air conditioner or lightbulb

can detect such attack and simply ignore them.

465International Conference on Advanced Communications Technology(ICACT)

ISBN 978-89-968650-8-7 ICACT2017 February 19 ~ 22, 2017

Meter Contract: On a smart contract, meter periodically

saves electricity use. Precisely, Raspberry Pi containing

Ethereum account acts as an IoT device to monitor meter and

sends the value to Ethereum. In order to show the identity of

sender, sender needs to send its public key and signature along

with electricity use.

Figure3. Simple Pseudo code of Meter Contract

As seen in Figure 3, logic is straightforward. Meter device

which contains Ethereum blockchain can simply sign and send

input values of value, publicKey, and signature. Since each

contract has its own unique address, we know where to send

data. In order to use update method, we need to encode input

values so it can run on Ethereum Virtual Machine. For

example, if we want to run update(300, “deadbeef”,

“babebabe”), we need to encode it into binary. If we encode it,

we would get the following:

Figure4. Encoded value of update(300, “deadbeef”, “babebabe”)

Even though the full explanation of encoding is out of

scope in this paper, we can briefly go over in order to

understand the general structure of Ethereum. To run

update(int,bytes,bytes), we need to hash it using Keccak-256

and take first four bytes of hashed output[21]. In other words,

we need first four bytes Keccak256(“update(int,bytes,bytes)”),

which is f1d38ccb. 12c signifies 300. And “deadbeef”

and”babebabe” are our bytes inputs. Values in between signify

offsets and length of bytes.

Thus using meter contract, meter that is attached to

Ethereum account can send values periodically to blockchain,

which other entities such as air conditioner or lightbulb can

retrieve.

Policy Contract: Along with meter, we need to set up

policies. As mentioned in the scenario, we would like to set up

policies for air conditioner and lightbulb. Given that we set

policy of air conditioner as 150KW, once the meter reaches

150KW, air conditioner simply switches from normal mode to

energy saving mode. The same scenario applies to lightbulb

too. Similar to meter contract, policy needs to be registered.

But instead of meter, we use smartphone to register.

Smartphone that contains Ethereum account can send data to

smart contract that manages policies.

Figure5. Simple Pseudo code of Air Conditioner Policy Contract

Just like Figure3, logic of Figure5 is almost identical. And

we omit light bulb policy since it is almost identical as well.

Once Ethereum account encodes policy with public key and

signature, and sends them to Ethereum, those values are

registered in contract.

Key Management:

Given that all of those contracts are running on Ethereum,

IoT devices such as air conditioner or light bulb need to

retrieve values from both meter contract and policy contract.

On values coming from meter contract, they check if inputs

are valid using public key and signature. To be precisely, we

are using RSA algorithm, which smart phone and meter keep

their secret keys. And on values from policy contracts, they

also check if inputs are valid using public key and signature. If

the scenario where electricity use surpasses policy while

periodically retrieving values, devices simply switch to energy

saving mode. Even though it is possible to use Ethereum

accounts as public key infrastructure since it is based on

ECDSA[22], we decide to use our own because of fine-

granularity.

466International Conference on Advanced Communications Technology(ICACT)

ISBN 978-89-968650-8-7 ICACT2017 February 19 ~ 22, 2017

IV. SIMULATION RESULTS AND DISCUSSION

We deployed smart contracts on Ethereum. Once we

deployed contracts, we started to provide inputs after encoding.

Once we have successfully updated/registered values on

Ethereum, we were able to retrieve values from Ethereum.

Our finished prototype looks as the following.

Figure6. Prototype of Ethereum IoT devices

As seen in the Figure 6, we used Raspberry Pis to simulate

IoT system. We set up meter, which updates to Ethereum

network periodically. We used a smartphone to set up the

policies of air conditioner and LED. And those two devices

respond according to policies given from Ethereum.

In the process of development, we find that there are some

weaknesses on Ethereum blockchain. First of all, even though

it has around 12 second transaction time, it still is not fast

enough for some domains. For time sensitive domain it may

be difficult to use such technology. Second of all, since light

client is not supported on Ethereum at this point, either we

need to use a proxy or have a large storage to save entire

blockchain. Using proxy may be easy. But we compromise

security because there is a third party involved. Second

solution, while it does not compromise security, may require

large storage, which would be too expensive or infeasible for

small IoT devices. Thus we would need to investigate further

on solutions for those weaknesses.

V. CONCLUSION

In this paper, we propose a way to manage IoT devices

using Ethereum, blockchain computing platform. We write

smart contracts to save data coming from meter and smart

phone. Using Ethereum account, meter constantly sends

electricity use and smart phone sends policies for air

conditioner and light bulb. And air conditioner and lightbulb

constantly checks the values on Ethereum to update their

devices. When necessary, they switch their mode from normal

to energy-saving. As proof of concept, we are starting with

small number of devices. Since we found that it is feasible to

build such a system, in further studies, we would like to build

fully-scaled IoT system which contains multiple of devices.

With the start of this experiment, we hope to see

improvements on IoT where users of the technology do not

need to worry about synchronization and denial of service

attacks while serving them efficiently and fast.

This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded

by the Korea government(MSIP)

(No. B0717-16-0114, Development of Biometrics-based Key

Infrastructure Technology for On-line Identification)

REFERENCES

[1] S. Nakamoto, Bitcoin: Peer-to-Peer Electronic Cash System, 2008
[2] "17 Blockchain Disruptive Use Cases." Everis NEXT. Everis NEXT,

02 June 2016. Web. 03 Jan. 2017.

[3] A. Shelkovnikov, Blockchain applications in the public sector, Deloitte,
2016

[4] J. Brito, Bitcoin A Primer for Policymakers, 2013

[5] Coinmarketcap.com, https://coinmarketcap.com, 2016/10/27
[6] G. Greenspan, Four Geuine Blockchain Use Cases, Coindesk.com.

May, 2016. Available: http://www.coindesk.com/four-genuine-

blockchain-use-cases/
[7] Ethereum White Paper, https://github.com/ethereum/wiki/wiki/White-

Paper, accessed 2016/10/31

[8] Bitcoinwiki, https://en.bitcoin.it/wiki/Block, accessed 2016/10/31
[9] Bitcoin Developer Guide, https://bitcoin.org, accessed 2016/10/31

[10] Bitcoinwiki, https://en.bitcoin.it/wiki/Script, accessed 2016/10/31

[11] V. Buterin, Toward a 12-second Block Time, Ethereum Blog, 2014
[12] G. Wood, Ethereum: A Secure Decentralised Generalised Transaction

Ledger, http://gavwood.com/paper.pdf, accessed 2016/10/31

[13] J Bughin, An Executive’s guide to the Internet of Things, McKinsey,
2016

[14] PwC, The Internet of Things has arrived in America’s factories, 2015

[15] J. Wilcke, The Ethereum network is currently undergoing a DoS attack,
Sep 2016. Available: https://blog.ethereum.org/2016/09/22/ethereum-

network-currently-undergoing-dos-attack/

[16] Ethereum, Writing a Contract, https://github.com/ethereum/go-
ethereum/wiki/Contracts-and-Transactions, accessed 2016/10/31

[17] P. Rizzo, Thomson Reuters Demos New Ethereum Blockchain Use

Cases, Sep 2016. Available: http://www.coindesk.com/thomson-
reuters-blockchain-ethereum-devcon2/

[18] G. Wood, Ethereum: A Secure Decentralised Generalised Transaction

Ledger, http://gavwood.com/paper.pdf, accessed 2016/10/31

[19] M. Gord, Smart Contracts Described by Nick Szabo 20 Years ago Now

Becoming Reality, Bitcoin Magazine, 2016

[20] Ethereum Frontier Guide, https://ethereum.gitbooks.io/frontier-guide,
accessed 2016/10/31

[21] Ethereum Contract ABI,

https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI,
accessed 2016/10/31

[22] H. Mayer, ECDSA Security in Bitcoin and Ethereum: a Research

Survey, 2016, Available: http://blog.coinfabrik.com/ecdsa-security-in-
bitcoin-and-ethereum-a-research-survey/

Seyoung Huh is a researcher of Authentication Research Team in ETRI,

South Korea. His research interests include blockchain, authentication,
cryptography, and any security-related fields.

Sangrae Cho is a senior researcher of Authentication Research Team in ETRI,
South Korea. He graduated from Imperial College London in 1996 obtained

BEng Computing degree and studied MSc in Information Security in Royal

Holloway, University of London in 1997. He started his career as a researcher
in LG Corporate Technology Institute in 1997 and has worked in ETRI for

over 15 years as a security researcher. During that time, he has actively

involved in constructing national PKI infrastructure project until 2001. From
2004, he has done several projects relating to Digital Identity Management

including SAML v2.0 and Authentication technology based on FIDO (Fast

Identity Online) specifications.

467International Conference on Advanced Communications Technology(ICACT)

ISBN 978-89-968650-8-7 ICACT2017 February 19 ~ 22, 2017

https://coinmarketcap.com/
http://www.coindesk.com/four-genuine-blockchain-use-cases/
http://www.coindesk.com/four-genuine-blockchain-use-cases/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://en.bitcoin.it/wiki/Block
https://bitcoin.org/
https://en.bitcoin.it/wiki/Script
http://gavwood.com/paper.pdf
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://github.com/ethereum/go-ethereum/wiki/Contracts-and-Transactions
https://github.com/ethereum/go-ethereum/wiki/Contracts-and-Transactions
http://www.coindesk.com/thomson-reuters-blockchain-ethereum-devcon2/
http://www.coindesk.com/thomson-reuters-blockchain-ethereum-devcon2/
http://gavwood.com/paper.pdf
https://ethereum.gitbooks.io/frontier-guide
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI
http://blog.coinfabrik.com/ecdsa-security-in-bitcoin-and-ethereum-a-research-survey/
http://blog.coinfabrik.com/ecdsa-security-in-bitcoin-and-ethereum-a-research-survey/

	00_bank
	로컬 디스크
	file:///C|/Users/admin/Desktop/01 ICACT2017/50 출판관련/01 Tech-pdf - CD - FULL/00_bank.txt

	20170040_finalpaper_R

