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Abstract— The concept of providing an on-line car pooling 
service to facilitate matching of drivers and riders has been 
around for a while. A number of systems or trials have also been 
built for use in university campuses or on-line communities. 
These systems however are quite restrictive in terms of the 
quality of matches and flexibility of pick-up/drop-off places, 
routes and schedules. Capitalizing on the ubiquitous wireless 
networks and GPS- enabled mobile devices, we have developed a 
smart ride-share system with an efficient scheduling algorithm 
for ride sharing, which can potentially achieve better vehicle 
utilization, energy consumption and user convenience. This 
paper describes the algorithms adopted in the system and 
presents a performance evaluation. The results show that with 
the proposed algorithm, ride-share scheduling can be achieved 
efficiently with large size of fleets. 
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I. INTRODUCTION

Carpooling has been around for many years, mostly 
realized as a community-driven service or through small 
affinity groups, where people arrange to share the rides, for 
example, between homes and work places.  The immediate 
benefits of carpooling to the participants include shared 
driving load, saving in gas expenses, and reduction in personal 
vehicle mileages and thus vehicle depreciation.   

Lately, the concept of carpooling has a new appeal to the 
government policy makers as well as concerned citizens in 
light of the global climate change.  Carpooling, in its various 
formats, has the potential of saving energy consumption and 
reducing traffic congestion. The former helps to achieve a 
sustainable and everlasting human being life style; the latter 
contributes to improved quality of individuals’ transportation 
experience. 

Despite of its eminent benefits to the human society, 
carpooling in its traditional embodiment has not attracted 
popular user adoption.  There are many reasons for this: some 
people are not feeling safe or comfortable riding with 
strangers; lack of automated tools for publishing and 
searching for carpool rides, inflexibility of pick-up/drop-off 
locations and times that cause inconvenience to potential users. 

Most of the concerns can be mitigated with the modern 
information and communication technologies including the 
ubiquitous wireless networks, GPS-enabled mobile devices 
and social networks. Indeed, there are initiatives and standard 

work that re-address the carpool applications with modern and 
improved formats [1,2,3].  In this paper, we describe a Smart 
Ride-Share (SmartRide for short) system that we built and 
deployed in partnership with a number of LBS (Location-
Based Service) vendors. SmartRide provides two major ride 
share applications: para-transit service and peer-to-peer (P2P) 
ride matching. This paper focuses on the para-transit service. 

Para-transit is a type of transportation service that fills the 
market gap between the traditional fixed route, fixed schedule 
city bus service and the ad hoc taxi service. Traditionally, the 
para-transit service is operated by a service provider 
contracted by the city government which manages a fleet of 
cars, vans or small buses. Most of them provide transportation 
services to special groups of users such as senior citizens or 
the handicapped. Recently, para-transit has also been 
considered as a less expensive alternative to regular bus 
service in providing transportation to people living in the rural 
areas.  

In para-transit, the users need to reserve the ride in 
advance by specifying pick-up location, time and drop-off 
location.  The challenge for the service provide is how to 
schedule the rider pick-up/drop-off sequences while not 
compromising user satisfaction by introducing intolerable 
delay due to ride sharing. In the core of SmartRide we 
developed a scheduling algorithm that, given the daily 
reservation data, will minimize the number of vehicles needed 
with minimum total distance travelled, constrained by a 
threshold of user-experienced delay. 

This paper proposes an efficient algorithm for the above 
ride-share scheduling problem for para-transit. 

The rest of the paper is organized as follows: The 
Subsection below provide review of related work. Section II 
provides a system overview of SmartRide. In Section III we 
define the scheduling problem for para-transit ride sharing and 
describe the algorithm we proposed and developed. We 
examine the preliminary performance results of the scheduling 
algorithm in Section IV and provide conclusions in Section V. 

A. Related Work 
Para-transit fleet dispatch and dynamic ride-sharing are 

identified in ISO TC-204 standardization [4] as ITS services 
under the public transport service groups.  An early work [1]
describes the software functionality and architecture of a 
service called “dial-a-ride” that is similar to the concept of 
para-transit.  A follow-up study [5] evaluates the cost and 
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benefits of the dial-a-ride transit service concept. A dynamic 
carpool prototype and related survey are reported in [2]. The 
work in [6] describes a method that uses short-range 
communications to discover available rides for share among 
requesting riders and vehicles. A grass-root initiative called 
SmartJitney [3] promotes the development of a nation-wide 
ride sharing platform using the modern information and 
communication technologies. 

None of the above work proposes or describes any 
algorithm for shared ride scheduling. In contrast, our work 
proposes a fleet dispatch scheduling algorithm for ride-sharing. 

II. SYSTEM OVERVIEW

We have developed a telematics product bundled with 
various telematics and ITS applications. SmartRide is one of 
the applications which we offer to para-transit fleet operators. 
The service is offered in partnership with a number of partners 
including Dmobile System (a mobile device vendor), 
OLEmap (an on-line map service provider), MactionTech (a 
navigation software vendor) and CTS (a wheelchair van/bus 
vendor). Figure 1 provides an architecture overview of the 
SmartRide system. 
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Figure 1. Sytem overview of SmartRide 

The vehicles are equipped with GPS-equipped on-board-
unit (OBU), which on one side may connects to user devices 
and on the other side connects to the Core Telematics 
Platform of the SmartRide system.  The OBU contains data 
and voice communication capability to facilitate dispatch and 
tracking. Alternatively, the vehicle may simply use a less 
expensive one-way GPS+GSM/GPRS tracker without user 
interface. The driver will then communicate with the dispatch 
center through a regular cellular phone. 

The Core Telematics Platform collects location data from 
the vehicles through cellular network and stores them in a 
database.  Various applications can be developed on top of the 
platform which retrieves vehicle information including 
location through a Web Service interface. The platform also 
offers other needed common functionality such as user and 
vehicle authentication. The FMAS (Fleet Management 
Application Server) provides monitoring and tracking 
capabilities, whereas the Carpool Application Server hosts the 
ride sharing application logic and user interface. 

III. ALGORITHMIC DESIGN

First we define the ride-share scheduling problem for para-
transit. We then discuss the simpler case of no ride sharing 
and map the problem to the classical bi-partite matching 
problem which has found efficient algorithmic solutions.  We 
then propose a 2-phase algorithm that combines a greedy 
method and the bi-partite matching algorithm, to solve the 
original ride-share scheduling problem. 

A. Problem Statement 
In this application the users are required to reserve their 

rides ahead of time. We call each reservation a task request, or
simply task. A task is a triplet X=(Xp, Xs, Xd), where Xp is the 
pick-up time, Xs is the pick-up location (source) and Xd is the 
drop-off location (destination). We assume the shortest time 
travelling route from location X to location Y can be computed 
by an underlying function and let t(X,Y) be the travelling time. 
There are existed algorithms and software that can compute 
t(X,Y) effectively.  

If each vehicle can only carry a passenger at a time (i.e. no 
ride sharing), then the travel time for task A is t(As, Ad).
However in the case of ride sharing, user A may have to wait 
for extra time for the pick-up and the actual riding time may 
also be increased due to detour to pick up or drop off other co-
riders. This delay must be bounded so as not to compromise 
user satisfaction. We set a system variable θ which serves as 
a threshold for the delay which requires, for any task A:

td(A) – Ap   t(As, Ad) + θ,     (Constraint I)
where td(A) is the actual drop-off time of A. This constraint 
means that the extra delay experienced by user A due to ride 
share should not exceed θ. Note in the above Ap is the reserved 
pick-up time so td(A) – Ap is effectively the actual travel time 
(including waiting and riding time) experienced by the user.  

Now suppose we have a fleet of M vehicles, each of which 
may accommodate more than one passenger, and let T = {A, B,
C, …} be the set of booked tasks for a given day, our 
objective is to assign the tasks to the vehicles using as few 
vehicles as possible, subject to Constraint I above.  When 
there are more than one possible ways for the assignment, we 
also want to minimize the total distance travelled by the 
vehicles. Note the schedule of a vehicle may be interleaved 
with pick-up and drop-off of different riders due to ride 
sharing. 

B. Scheduling without Ride-Share 

We will first take a look at a simpler version of the original 
problem by considering no ride share and with the objective to 
minimize the number of vehicles needed to carry out a given 
set of tasks.  We will relax these assumptions later.  

It is not hard to see that a vehicle can serve tasks A and B in 
sequence if the following condition holds: 

Ae + t(Ad, Bs)  Bp,
where Ae = Ap + t(As, Ad) is the drop-off time of task A. Given 
a set of tasks T we can construct a directed graph G, whose 
nodes are the tasks, and there exists a directed edge from node 
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A to node B, denoted (A,B), if a single vehicle can serve task B
after task A. The graph is transitive, in that if edges (A, B) and 
(B,C) are present, then edge (A,C) is present. Figure 2 shows 
an example of five tasks. 

Figure 2. An example graph G for five tasks 

Each path in the graph corresponds to a schedule that can 
be carried out by a single vehicle. Note a path with only one 
node and no edges corresponds to a schedule that serves only 
the task corresponding to the node. Given a graph with N
nodes, in the worst case we need N vehicles to carry out the 
tasks if all N tasks are overlapped in time.  But in most cases 
some of the tasks are non-overlapped and can be scheduled in 
sequence. Our goal therefore is to find the minimum number 
of disjoint paths that can cover all nodes in the graph. In 
Figure 2, the answer constitutes two disjoint paths: A B D
and C E.  That is, the five tasks can be carried out by two 
vehicles. 

To solve the problem, we map it to a ‘maximum cardinality 
bipartite matching problem’ [7]. We create, as follows in 
Figure 3, a new bipartite graph G’ in which the nodes on the 
left side correspond to the drop-off time and the nodes on the 
right side correspond to the pick-up time of the tasks in T. In
G’, a directed edge from node AE to node BP exists if we can 
follow task A by task B on a single vehicle, that is, if in the 
earlier graph G, there was an edge from A to B.

Figure 3. Bipartite graph G’ 

A disjoint set of directed paths in G is a set of edges such 
that each node of G has at most one incoming edge, and at 
most one outgoing edge. If G is covered by V disjoint directed 
paths, then V nodes (the first nodes in each path) have no 
incoming edge in the set, and the rest of the nodes have one 
incoming edge (likewise V nodes have no outgoing edge in the 
set, and the rest of the nodes have one outgoing edge). The 
number of edges in the set of disjoint directed paths covering 
G is therefore (N-V). Such a cover of G by V disjoint directed 
paths corresponds to a set of links in the bipartite G’, where 
each node AE has at most one edge in the set, and each node 
BP has at most one edge in the set. That is, it is a ‘matching’ 

[7] in G’, consisting of (N-V) edges. Thus, minimizing V in 
graph G is equivalent to maximizing the number of edges in 
the matching in graph G’. Hence, the problem of covering the 
nodes in G by a minimum number of disjoint directed paths is 
equivalent to the problem of finding a maximum cardinality 
matching in the bipartite graph G’.

This is a well-studied problem, and has a fairly simple 
solution algorithm with complexity O(nm) [7], where n is the 
number of nodes in G’, and m is the number of edges in G’. In 
the example of Figure 3, n is 2N and m is at most N(N-1). The 
O(nm) algorithm, attributed to van der Waerden and Kınig, is 
outlined below. We would apply this algorithm to G’, taking 
input U as the set of left-hand side nodes XE from G’, and 
input W as the set of right-hand side nodes XP from G’.

Input: a bipartite graph G with node sets U and W, and 
edges E.

Output: a maximum cardinality matching M* of G.
Initialize M = ∅ (the empty set), as a subset of E.
Repeat steps 1-4 below until the loop exits in Step 3 
1. Construct a directed graph DM by re-orienting each edge 

e={u,w} of G (where u U, w W) as follows: 
a. if e is in M, orient e from w to u,
b. if e is not in M, orient e from u to w.

2. Let UM and WM be the sets of nodes in U and W missed 
by M.

3. Find a directed path P in DM from UM to WM, by, for 
example, breadth-first search. This will alternate 
reorientations of edges in M with edges not in M. If no 
such path is found, exit the loop. 

4. Remove from M edges in P M, and add to M edges in P
– M. This will increase the size of M by 1. 

Return the final value of M as M*. 

Minimizing Total Travel Distance 
It may occur that G can be covered by V disjoint directed 

paths in more than one way. If we associate a cost CAB for 
each edge (A, B) in G, we can choose a solution of minimum 
total cost. Such a cost might reflect total distance travelled, 
fuel consumption, or tolls. We can map this problem to that of 
finding a `maximum-weight matching’ of size (N-V) of G’,
i.e., of finding a matching of cardinality (N-V) that has 
maximum weight among all matchings of size (N-V). To do 
this, we just assign to each edge (AE, BP) in G’ the cost CAB.

The problem of finding a maximum-weight matching of a 
specified cardinality in a bipartite graph is again well-studied. 
It has a simple O(n2m) algorithm, and a more complicated 
O(n((m+n) log n)) algorithm [8], where again n is the number 
of nodes in G’, and m the number of edges in G’.  We adopted 
the simple algorithm which is attributed to Kuhn and very 
similar to the algorithm for maximal cardinality bipartite 
matching. The algorithm is outlined below. 

P

P
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Input: a bipartite graph G with node sets U and W, and 
edges E, edge weights ce for each edge e in E, and size k.

Output: a maximum weight matching M* of G among all 
matchings of G of size k.

Initialize M = ∅ , as a subset of E.
Repeat steps 1-4 below until M contains k edges: 
1. Construct a directed graph DM by re-orienting each edge e

= {u,w} of G (where u U, w W) as follows: 
a. if e is in M, orient e from w to u, and assign length le =

ce,
b. if e is not in M, orient e from u to w, and assign length 

le = ce.
2. Let UM and WM be the sets of nodes in U and W missed 

by M.
3. Find a shortest (according to the edge lengths le) directed 

path P in DM from UM to WM (this can be done by, for 
example, a breadth-first search). This will alternate 
reorientations of edges in M with edges not in M. If no 
such path is found, there is no matching of the required 
size. 

4. Remove from M edges in P M, and add to M edges in P
– M. This will increase the size of M by 1. 

Return the final value of M as M*.

In our implementation we first run the maximal cardinality 
bipartite matching algorithm to find k – the minimum of 
vehicles needed.  Then run the maximum-weight matching 
algorithm using k as an input to find the schedule with the 
lowest travel distance among all candidates with size k.

C. Greedy Method for Ride Sharing

The algorithms described above do not consider ride share, 
i.e. a vehicle can carry at most one passenger at a time.  
Adding this dimension to the problem makes it much harder to 
solve.  We propose a 2-phase approach solution which turns 
out to be quite effective in practice for ride-share scheduling. 
In the first phase, we use a greedy method to identify tasks 
that can share on the same ride and merge them into a new 
task.  Effectively this will produce a new set of tasks some of 
which are merged from the original tasks.  We then take the 
new set of tasks as input to the bipartite algorithms as 
described above to generate the final schedule.  We describe 
the greedy method in the following. 

To simplify the discussion and without loss of 
generalization, we assume each vehicle can carry at most two 
passengers at any given time. This assumption can be easily 
relaxed in our algorithm. The greedy method will merge two 
tasks A and B into a new one if they overlap and will not 
violate Constraint I, i.e., the extra delay experienced by either 
passenger due to ride sharing should not exceed a pre-defined 
system threshold θ. We outline below the greedy method 
algorithm that takes as input a set of tasks T and produces a 
consolidated set of tasks T’ by merging some of the 
overlapping tasks, subject to Constraint I. 

We describe next how to check whether two tasks A and B
can be combined for ride share without violating Constraint I. 
Let us assume the following notations: 

Xp:   pick-up location of task X
Xd:   drop-off location of task X
t(Xp):   reserved pick-up time of task X
T(X,Y): travelling time from location X to location Y

Without loss of generality assuming t(Ap) < t(Bp), then there 
are two possible vehicle routing scenarios if A and B share the 
ride:

Case A. Route Ap Bp Ad Bd as shown in Figure 4.

Figure 4. A scenario of ride share routing – Case A 

In this case tasks A and B can share ride without violating 
Constraint I only if the following conditions are satisfied: 

[T(Ap, Bp) + TA_wait_B + T(Bp, Ad)] T(Ap, Ad)
[TB_wait_A + T(Bp, Ad) + T(Ad, Bd)] T(Bp, Bd) .

In the above, TA_wait_B  and TB_wait_A are defined as follows

TA_wait_B  max (t(Bp) t(Ap) T(Ap, Bp) , 0) 
TB_wait_A  max (t(Ap) + T(Ap, Bp) T(Bp), 0) 

Greedy Method for Ride Share
Input: T
Output: T’ (initially empty) 
For each task A in T do 
  For each task B in T do 
   If (A and B can be combined without violating 
        Constraint I)
   then { 

Combine A and B into a new task C and add C
   into T’;
Remove A and B from T;

   } 
  Endfor; 
Endfor; 
Move all remaining tasks in T to T’.
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Case B. Route Ap Bp Bd Ad as shown in Figure 5. 

Figure 5. A scenario of ride share routing – Case B 

In this case tasks A and B can share ride without violating 
Constraint I only if the following conditions are satisfied: 

[T(Ap, Bp) + TA_wait_B + T(Bp, Bd) + T(Bd, Ad)] T(Ap, Ad)
TB_wait_A ,

where TA_wait_B  and TB_wait_A are computed as before. 

IV.PERFORMANCE EVALUATION

We have implemented the greedy ride sharing algorithms in 
our SmartRide para-transit application. The application is 
serving the handicap vans operators in Taipei for ride share 
scheduling. However as the current number of operating 
vehicles and rides are small (less than 50 vehicles), we opt to 
evaluate the performance of the algorithms using a simulated 
task generator. This will help us assess the scalability of the 
algorithm as the size of fleet grows to a large number. 

In the experiments, we generated the tasks by randomly 
selecting pick-up and drop-off locations from a 100km x 
100km area. The pick-up time for each task is also randomly 
generated. The vehicle speed is set to 60km per hour.  

Figure 6 shows the result where we depict the algorithm 
computation time (y-axis) as a function of the number of tasks 
(x-axis).  We also varied the number of vehicles, ranging from 
50 to 200, each corresponding to a separate curve in the figure. 

Figure 6. Performance results of the ride-share scheduling algorithm 

The results show that the computation time rises as the  
number of tasks increases, at a rate close to O(n2) where n is 
the number of tasks. The time spent by the greedy method and 
by the bipartite matching algorithm is about 1:60 for 1000 
tasks. The number of vehicles does not have much impact on 
the performance as the four curves do part from each other 
noticeably, though our algorithm computation time grows in 
O(m)  where m is the number of vehicles. 

The algorithm spends about 32 seconds for scheduling 1000 
tasks. This is quite efficient as the experiment is run on a Dell 
PC with Intel Core2 Duo 3.00GHz and 2GB RAM. 

V. CONCLUSIONS

Para-transit has an appeal to government policy makers 
from the consideration of reducing energy consumption, air 
pollution, traffic congestion, and saving of public 
transportation cost. We have proposed an ride-share 
scheduling algorithm that combines a greedy method and 
bipartite matching algorithms to minimize the number of 
vehicles needed and total travel distance for an input set of 
dispatch tasks. We have built it into our SmartRide system 
which we offer to para-transit service providers in Taipei. The 
performance study shows that the scheduling algorithm is 
quite efficient in finding good fleet utilization schedule, taking 
only 32 seconds to complete for up to 1000 tasks. 
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