
Smart Ride Share with Flexible Route Matching
Chung-Min Chen*, David Shallcross*, Yung-Chien Shih†, Yen-Ching Wu†, Sheng-Po Kuo†, Yuan-Ying Hsu†,

Yuhsiang Holderby†, William Chou‡

*Telcordia Technologies, Piscataway, NJ 08854, USA
†Telcordia Applied Research Center Taiwan, Taipei, Taiwan

‡Dmobile System, Taipei, Taiwan
{cchen2, yshih, ywu, skuo, ihsu, davids}@telcordia.com, william.chou@dmobile.cc

Abstract— The concept of providing an on-line car pooling
service to facilitate matching of drivers and riders has been
around for a while. A number of systems or trials have also been
built for use in university campuses or on-line communities.
These systems however are quite restrictive in terms of the
quality of matches and flexibility of pick-up/drop-off places,
routes and schedules. Capitalizing on the ubiquitous wireless
networks and GPS- enabled mobile devices, we have developed a
smart ride-share system with an efficient scheduling algorithm
for ride sharing, which can potentially achieve better vehicle
utilization, energy consumption and user convenience. This
paper describes the algorithms adopted in the system and
presents a performance evaluation. The results show that with
the proposed algorithm, ride-share scheduling can be achieved
efficiently with large size of fleets.

Keywords— telematics, ITS, carpool, fleet scheduling

I. INTRODUCTION

Carpooling has been around for many years, mostly
realized as a community-driven service or through small
affinity groups, where people arrange to share the rides, for
example, between homes and work places. The immediate
benefits of carpooling to the participants include shared
driving load, saving in gas expenses, and reduction in personal
vehicle mileages and thus vehicle depreciation.

Lately, the concept of carpooling has a new appeal to the
government policy makers as well as concerned citizens in
light of the global climate change. Carpooling, in its various
formats, has the potential of saving energy consumption and
reducing traffic congestion. The former helps to achieve a
sustainable and everlasting human being life style; the latter
contributes to improved quality of individuals’ transportation
experience.

Despite of its eminent benefits to the human society,
carpooling in its traditional embodiment has not attracted
popular user adoption. There are many reasons for this: some
people are not feeling safe or comfortable riding with
strangers; lack of automated tools for publishing and
searching for carpool rides, inflexibility of pick-up/drop-off
locations and times that cause inconvenience to potential users.

Most of the concerns can be mitigated with the modern
information and communication technologies including the
ubiquitous wireless networks, GPS-enabled mobile devices
and social networks. Indeed, there are initiatives and standard

work that re-address the carpool applications with modern and
improved formats [1,2,3]. In this paper, we describe a Smart
Ride-Share (SmartRide for short) system that we built and
deployed in partnership with a number of LBS (Location-
Based Service) vendors. SmartRide provides two major ride
share applications: para-transit service and peer-to-peer (P2P)
ride matching. This paper focuses on the para-transit service.

Para-transit is a type of transportation service that fills the
market gap between the traditional fixed route, fixed schedule
city bus service and the ad hoc taxi service. Traditionally, the
para-transit service is operated by a service provider
contracted by the city government which manages a fleet of
cars, vans or small buses. Most of them provide transportation
services to special groups of users such as senior citizens or
the handicapped. Recently, para-transit has also been
considered as a less expensive alternative to regular bus
service in providing transportation to people living in the rural
areas.

In para-transit, the users need to reserve the ride in
advance by specifying pick-up location, time and drop-off
location. The challenge for the service provide is how to
schedule the rider pick-up/drop-off sequences while not
compromising user satisfaction by introducing intolerable
delay due to ride sharing. In the core of SmartRide we
developed a scheduling algorithm that, given the daily
reservation data, will minimize the number of vehicles needed
with minimum total distance travelled, constrained by a
threshold of user-experienced delay.

This paper proposes an efficient algorithm for the above
ride-share scheduling problem for para-transit.

The rest of the paper is organized as follows: The
Subsection below provide review of related work. Section II
provides a system overview of SmartRide. In Section III we
define the scheduling problem for para-transit ride sharing and
describe the algorithm we proposed and developed. We
examine the preliminary performance results of the scheduling
algorithm in Section IV and provide conclusions in Section V.

A. Related Work
Para-transit fleet dispatch and dynamic ride-sharing are

identified in ISO TC-204 standardization [4] as ITS services
under the public transport service groups. An early work [1]
describes the software functionality and architecture of a
service called “dial-a-ride” that is similar to the concept of
para-transit. A follow-up study [5] evaluates the cost and

ISBN 978-89-5519-154-7 1506 Feb. 13~16, 2011 ICACT2011

benefits of the dial-a-ride transit service concept. A dynamic
carpool prototype and related survey are reported in [2]. The
work in [6] describes a method that uses short-range
communications to discover available rides for share among
requesting riders and vehicles. A grass-root initiative called
SmartJitney [3] promotes the development of a nation-wide
ride sharing platform using the modern information and
communication technologies.

None of the above work proposes or describes any
algorithm for shared ride scheduling. In contrast, our work
proposes a fleet dispatch scheduling algorithm for ride-sharing.

II. SYSTEM OVERVIEW

We have developed a telematics product bundled with
various telematics and ITS applications. SmartRide is one of
the applications which we offer to para-transit fleet operators.
The service is offered in partnership with a number of partners
including Dmobile System (a mobile device vendor),
OLEmap (an on-line map service provider), MactionTech (a
navigation software vendor) and CTS (a wheelchair van/bus
vendor). Figure 1 provides an architecture overview of the
SmartRide system.

Authentication/Validation

CO
M

M
ATS

CTS
G

EO

Route

G
eocode

PO
I

COMM
Handler FMAS

App Server

Carpool
App Server

AUTH
Module

On-Board Unit

COMM
Module

AUTH
Handler

Communication
API

Adv Telematics
API

(Gateway API)

Core Telematics
API

(Gateway API)

Geographical
API

(Directory, Geocoding,
Routing APIs)

COMM
Forwarder

Core Telematics Platform

W
eb Server

GUI

HTTP

HTTP

HTTP

H
TTP

H
TTP

H
TTP

SOCKET

SOCKET

Context
Reporter

Context
Handler

SOCKET

Database

Tracker

Context
Reporter

Device

App Client

Figure 1. Sytem overview of SmartRide

The vehicles are equipped with GPS-equipped on-board-
unit (OBU), which on one side may connects to user devices
and on the other side connects to the Core Telematics
Platform of the SmartRide system. The OBU contains data
and voice communication capability to facilitate dispatch and
tracking. Alternatively, the vehicle may simply use a less
expensive one-way GPS+GSM/GPRS tracker without user
interface. The driver will then communicate with the dispatch
center through a regular cellular phone.

The Core Telematics Platform collects location data from
the vehicles through cellular network and stores them in a
database. Various applications can be developed on top of the
platform which retrieves vehicle information including
location through a Web Service interface. The platform also
offers other needed common functionality such as user and
vehicle authentication. The FMAS (Fleet Management
Application Server) provides monitoring and tracking
capabilities, whereas the Carpool Application Server hosts the
ride sharing application logic and user interface.

III. ALGORITHMIC DESIGN

First we define the ride-share scheduling problem for para-
transit. We then discuss the simpler case of no ride sharing
and map the problem to the classical bi-partite matching
problem which has found efficient algorithmic solutions. We
then propose a 2-phase algorithm that combines a greedy
method and the bi-partite matching algorithm, to solve the
original ride-share scheduling problem.

A. Problem Statement
In this application the users are required to reserve their

rides ahead of time. We call each reservation a task request, or
simply task. A task is a triplet X=(Xp, Xs, Xd), where Xp is the
pick-up time, Xs is the pick-up location (source) and Xd is the
drop-off location (destination). We assume the shortest time
travelling route from location X to location Y can be computed
by an underlying function and let t(X,Y) be the travelling time.
There are existed algorithms and software that can compute
t(X,Y) effectively.

If each vehicle can only carry a passenger at a time (i.e. no
ride sharing), then the travel time for task A is t(As, Ad).
However in the case of ride sharing, user A may have to wait
for extra time for the pick-up and the actual riding time may
also be increased due to detour to pick up or drop off other co-
riders. This delay must be bounded so as not to compromise
user satisfaction. We set a system variable θ which serves as
a threshold for the delay which requires, for any task A:

td(A) – Ap t(As, Ad) + θ, (Constraint I)
where td(A) is the actual drop-off time of A. This constraint
means that the extra delay experienced by user A due to ride
share should not exceed θ. Note in the above Ap is the reserved
pick-up time so td(A) – Ap is effectively the actual travel time
(including waiting and riding time) experienced by the user.

Now suppose we have a fleet of M vehicles, each of which
may accommodate more than one passenger, and let T = {A, B,
C, …} be the set of booked tasks for a given day, our
objective is to assign the tasks to the vehicles using as few
vehicles as possible, subject to Constraint I above. When
there are more than one possible ways for the assignment, we
also want to minimize the total distance travelled by the
vehicles. Note the schedule of a vehicle may be interleaved
with pick-up and drop-off of different riders due to ride
sharing.

B. Scheduling without Ride-Share

We will first take a look at a simpler version of the original
problem by considering no ride share and with the objective to
minimize the number of vehicles needed to carry out a given
set of tasks. We will relax these assumptions later.

It is not hard to see that a vehicle can serve tasks A and B in
sequence if the following condition holds:

Ae + t(Ad, Bs) Bp,
where Ae = Ap + t(As, Ad) is the drop-off time of task A. Given
a set of tasks T we can construct a directed graph G, whose
nodes are the tasks, and there exists a directed edge from node

ISBN 978-89-5519-154-7 1507 Feb. 13~16, 2011 ICACT2011

A to node B, denoted (A,B), if a single vehicle can serve task B
after task A. The graph is transitive, in that if edges (A, B) and
(B,C) are present, then edge (A,C) is present. Figure 2 shows
an example of five tasks.

Figure 2. An example graph G for five tasks

Each path in the graph corresponds to a schedule that can
be carried out by a single vehicle. Note a path with only one
node and no edges corresponds to a schedule that serves only
the task corresponding to the node. Given a graph with N
nodes, in the worst case we need N vehicles to carry out the
tasks if all N tasks are overlapped in time. But in most cases
some of the tasks are non-overlapped and can be scheduled in
sequence. Our goal therefore is to find the minimum number
of disjoint paths that can cover all nodes in the graph. In
Figure 2, the answer constitutes two disjoint paths: A B D
and C E. That is, the five tasks can be carried out by two
vehicles.

To solve the problem, we map it to a ‘maximum cardinality
bipartite matching problem’ [7]. We create, as follows in
Figure 3, a new bipartite graph G’ in which the nodes on the
left side correspond to the drop-off time and the nodes on the
right side correspond to the pick-up time of the tasks in T. In
G’, a directed edge from node AE to node BP exists if we can
follow task A by task B on a single vehicle, that is, if in the
earlier graph G, there was an edge from A to B.

Figure 3. Bipartite graph G’

A disjoint set of directed paths in G is a set of edges such
that each node of G has at most one incoming edge, and at
most one outgoing edge. If G is covered by V disjoint directed
paths, then V nodes (the first nodes in each path) have no
incoming edge in the set, and the rest of the nodes have one
incoming edge (likewise V nodes have no outgoing edge in the
set, and the rest of the nodes have one outgoing edge). The
number of edges in the set of disjoint directed paths covering
G is therefore (N-V). Such a cover of G by V disjoint directed
paths corresponds to a set of links in the bipartite G’, where
each node AE has at most one edge in the set, and each node
BP has at most one edge in the set. That is, it is a ‘matching’

[7] in G’, consisting of (N-V) edges. Thus, minimizing V in
graph G is equivalent to maximizing the number of edges in
the matching in graph G’. Hence, the problem of covering the
nodes in G by a minimum number of disjoint directed paths is
equivalent to the problem of finding a maximum cardinality
matching in the bipartite graph G’.

This is a well-studied problem, and has a fairly simple
solution algorithm with complexity O(nm) [7], where n is the
number of nodes in G’, and m is the number of edges in G’. In
the example of Figure 3, n is 2N and m is at most N(N-1). The
O(nm) algorithm, attributed to van der Waerden and Kınig, is
outlined below. We would apply this algorithm to G’, taking
input U as the set of left-hand side nodes XE from G’, and
input W as the set of right-hand side nodes XP from G’.

Input: a bipartite graph G with node sets U and W, and
edges E.

Output: a maximum cardinality matching M* of G.
Initialize M = ∅ (the empty set), as a subset of E.
Repeat steps 1-4 below until the loop exits in Step 3
1. Construct a directed graph DM by re-orienting each edge

e={u,w} of G (where u U, w W) as follows:
a. if e is in M, orient e from w to u,
b. if e is not in M, orient e from u to w.

2. Let UM and WM be the sets of nodes in U and W missed
by M.

3. Find a directed path P in DM from UM to WM, by, for
example, breadth-first search. This will alternate
reorientations of edges in M with edges not in M. If no
such path is found, exit the loop.

4. Remove from M edges in P M, and add to M edges in P
– M. This will increase the size of M by 1.

Return the final value of M as M*.

Minimizing Total Travel Distance
It may occur that G can be covered by V disjoint directed

paths in more than one way. If we associate a cost CAB for
each edge (A, B) in G, we can choose a solution of minimum
total cost. Such a cost might reflect total distance travelled,
fuel consumption, or tolls. We can map this problem to that of
finding a `maximum-weight matching’ of size (N-V) of G’,
i.e., of finding a matching of cardinality (N-V) that has
maximum weight among all matchings of size (N-V). To do
this, we just assign to each edge (AE, BP) in G’ the cost CAB.

The problem of finding a maximum-weight matching of a
specified cardinality in a bipartite graph is again well-studied.
It has a simple O(n2m) algorithm, and a more complicated
O(n((m+n) log n)) algorithm [8], where again n is the number
of nodes in G’, and m the number of edges in G’. We adopted
the simple algorithm which is attributed to Kuhn and very
similar to the algorithm for maximal cardinality bipartite
matching. The algorithm is outlined below.

P

P

ISBN 978-89-5519-154-7 1508 Feb. 13~16, 2011 ICACT2011

Input: a bipartite graph G with node sets U and W, and
edges E, edge weights ce for each edge e in E, and size k.

Output: a maximum weight matching M* of G among all
matchings of G of size k.

Initialize M = ∅ , as a subset of E.
Repeat steps 1-4 below until M contains k edges:
1. Construct a directed graph DM by re-orienting each edge e

= {u,w} of G (where u U, w W) as follows:
a. if e is in M, orient e from w to u, and assign length le =

ce,
b. if e is not in M, orient e from u to w, and assign length

le = ce.
2. Let UM and WM be the sets of nodes in U and W missed

by M.
3. Find a shortest (according to the edge lengths le) directed

path P in DM from UM to WM (this can be done by, for
example, a breadth-first search). This will alternate
reorientations of edges in M with edges not in M. If no
such path is found, there is no matching of the required
size.

4. Remove from M edges in P M, and add to M edges in P
– M. This will increase the size of M by 1.

Return the final value of M as M*.

In our implementation we first run the maximal cardinality
bipartite matching algorithm to find k – the minimum of
vehicles needed. Then run the maximum-weight matching
algorithm using k as an input to find the schedule with the
lowest travel distance among all candidates with size k.

C. Greedy Method for Ride Sharing

The algorithms described above do not consider ride share,
i.e. a vehicle can carry at most one passenger at a time.
Adding this dimension to the problem makes it much harder to
solve. We propose a 2-phase approach solution which turns
out to be quite effective in practice for ride-share scheduling.
In the first phase, we use a greedy method to identify tasks
that can share on the same ride and merge them into a new
task. Effectively this will produce a new set of tasks some of
which are merged from the original tasks. We then take the
new set of tasks as input to the bipartite algorithms as
described above to generate the final schedule. We describe
the greedy method in the following.

To simplify the discussion and without loss of
generalization, we assume each vehicle can carry at most two
passengers at any given time. This assumption can be easily
relaxed in our algorithm. The greedy method will merge two
tasks A and B into a new one if they overlap and will not
violate Constraint I, i.e., the extra delay experienced by either
passenger due to ride sharing should not exceed a pre-defined
system threshold θ. We outline below the greedy method
algorithm that takes as input a set of tasks T and produces a
consolidated set of tasks T’ by merging some of the
overlapping tasks, subject to Constraint I.

We describe next how to check whether two tasks A and B
can be combined for ride share without violating Constraint I.
Let us assume the following notations:

Xp: pick-up location of task X
Xd: drop-off location of task X
t(Xp): reserved pick-up time of task X
T(X,Y): travelling time from location X to location Y

Without loss of generality assuming t(Ap) < t(Bp), then there
are two possible vehicle routing scenarios if A and B share the
ride:

Case A. Route Ap Bp Ad Bd as shown in Figure 4.

Figure 4. A scenario of ride share routing – Case A

In this case tasks A and B can share ride without violating
Constraint I only if the following conditions are satisfied:

[T(Ap, Bp) + TA_wait_B + T(Bp, Ad)] T(Ap, Ad)
[TB_wait_A + T(Bp, Ad) + T(Ad, Bd)] T(Bp, Bd) .

In the above, TA_wait_B and TB_wait_A are defined as follows

TA_wait_B max (t(Bp) t(Ap) T(Ap, Bp) , 0)
TB_wait_A max (t(Ap) + T(Ap, Bp) T(Bp), 0)

Greedy Method for Ride Share
Input: T
Output: T’ (initially empty)
For each task A in T do
 For each task B in T do
 If (A and B can be combined without violating
 Constraint I)
 then {

Combine A and B into a new task C and add C
 into T’;
Remove A and B from T;

 }
 Endfor;
Endfor;
Move all remaining tasks in T to T’.

ISBN 978-89-5519-154-7 1509 Feb. 13~16, 2011 ICACT2011

Case B. Route Ap Bp Bd Ad as shown in Figure 5.

Figure 5. A scenario of ride share routing – Case B

In this case tasks A and B can share ride without violating
Constraint I only if the following conditions are satisfied:

[T(Ap, Bp) + TA_wait_B + T(Bp, Bd) + T(Bd, Ad)] T(Ap, Ad)
TB_wait_A ,

where TA_wait_B and TB_wait_A are computed as before.

IV.PERFORMANCE EVALUATION

We have implemented the greedy ride sharing algorithms in
our SmartRide para-transit application. The application is
serving the handicap vans operators in Taipei for ride share
scheduling. However as the current number of operating
vehicles and rides are small (less than 50 vehicles), we opt to
evaluate the performance of the algorithms using a simulated
task generator. This will help us assess the scalability of the
algorithm as the size of fleet grows to a large number.

In the experiments, we generated the tasks by randomly
selecting pick-up and drop-off locations from a 100km x
100km area. The pick-up time for each task is also randomly
generated. The vehicle speed is set to 60km per hour.

Figure 6 shows the result where we depict the algorithm
computation time (y-axis) as a function of the number of tasks
(x-axis). We also varied the number of vehicles, ranging from
50 to 200, each corresponding to a separate curve in the figure.

Figure 6. Performance results of the ride-share scheduling algorithm

The results show that the computation time rises as the
number of tasks increases, at a rate close to O(n2) where n is
the number of tasks. The time spent by the greedy method and
by the bipartite matching algorithm is about 1:60 for 1000
tasks. The number of vehicles does not have much impact on
the performance as the four curves do part from each other
noticeably, though our algorithm computation time grows in
O(m) where m is the number of vehicles.

The algorithm spends about 32 seconds for scheduling 1000
tasks. This is quite efficient as the experiment is run on a Dell
PC with Intel Core2 Duo 3.00GHz and 2GB RAM.

V. CONCLUSIONS

Para-transit has an appeal to government policy makers
from the consideration of reducing energy consumption, air
pollution, traffic congestion, and saving of public
transportation cost. We have proposed an ride-share
scheduling algorithm that combines a greedy method and
bipartite matching algorithms to minimize the number of
vehicles needed and total travel distance for an input set of
dispatch tasks. We have built it into our SmartRide system
which we offer to para-transit service providers in Taipei. The
performance study shows that the scheduling algorithm is
quite efficient in finding good fleet utilization schedule, taking
only 32 seconds to complete for up to 1000 tasks.

ACKNOWLEDGMENT

We would like to thank Komandur Krishnan for discussions
with us on many aspects of the scheduling problem and
providing helpful directions.

REFERENCES
[1] R. B. Dial, “Autonomous dial-a-ride transit: Software functionality and

architecture overview”, Transportation Research, Vol. 3, No. 5, 1995,
pp. 261-275.

[2] D. W. Massaro, B. Chaney, S. Bigler, J. Lancaster, S. Iyer, M. Gawade,
M. Eccleston, E. Gurrola, and A. Lopez, “Carpool Now: just in-time
carpooling without elaborate preplanning”, in Proc. 5th Int. Conf. on
Web Information Systems and Technologies, Lisbon, Portugal,, March
23-26, 2009.

[3] R. Content, “The SmartJitney: rapid, realistic, transit reinvention”,
Community Solutions, April 2009,
www.communitysolution.org/rideshare.html.

[4] ISO TC 204 Standard TS14813-1:2007, “Intelligent transport systems
– Reference model architecture(s) for the ITS sector, Part 1: ITS
Service Domains, Service Groups and Services”.

[5] S. W. Lau, “Autonomous dial-a-ride transit: benefits-cost evaluation”,
Volpe National Transportation Systems Center, U.S. Department of
Transportation, August 1998.

[6] S. Winter and S. Nittel, “Ad-hoc shared-ride trip planning by mobile
geosensor networks”, International Journal of Geographical
Information Science, Vol. 20, July 2006, pp. 899-916.

[7] http://en.wikipedia.org/wiki/Matching_(graph_theory)
[8] Kuhn, H.W, The Hungarian method for the assignment problem. Naval

Research Logistics Quarterly. v2. 83-97.

ISBN 978-89-5519-154-7 1510 Feb. 13~16, 2011 ICACT2011

