Measurement and Modeling the Power Consumption of Router Interface

Jaewon AHN*, Hong-Shik PARK*

* Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea anjwon@kaist.ac.kr, parkhs@ee.kaist.ac.kr

Abstract— Energy saving study without the power consumption measurement of network devices makes less effective or biased results than the study based on the empirical power consumption data. Thus, precise evaluation of network appliance power consumption is inevitable to develop more influential energy saving techniques. In this paper, we measure the power consumption of an edge router, CISCO 7609 router, as well as evaluate the effect of the packet size and the routing protocol onto the power consumption of an edge router. We investigate that with four different packet sizes according to RFC 2544 and three different routing protocols, none, OSPF, and BGP with the increment of link utilization. We analyse empirical data for numerous individual cases and find that the packet size are closely related to the power consumption of the edge router. Based on these results, we model the formal power consumption equation of the edge router.

Keyword— Power consumption, packet size, routing protocol, edge router, link utilization

Jaewon Ahn received his BS from Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Rep. of Korea, in information and communication engineering in 2009 and his MS from KAIST, Daejeon, Rep. of Korea, in electrical engineering in 2011. He is currently working toward a PhD from electrical engineering, KAIST. His current research interests include energy consumption measurement and analysis on network devices, traffic measurement and analysis, user behavior modeling on the social media and information diffusion modeling on the social network services.

Hong-Shik Park received his BS from Seoul National University, Seoul, Rep. of Korea, in 1977 and his MS and PhD from the Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Rep. of Korea, in electrical engineering in 1986 and 1995, respectively. In 1977, he joined ETRI and worked on the development of the TDX digital switching system family, including TDX-1, TDX-1A, TDX-1B, TDX-10, and ATM switching systems. In 1998, he moved to the Information and Communications University, Daejeon, Rep. of Korea, as a member of the faculty. Currently, he is a professor in the Department of Electrical and Electronics Engineering, KAIST. His research interests are network architecture, network protocols, and performance analysis of telecommunication systems. He is a member of the IEEE, IEEK, and KICS of the Rep. of Korea.