Editor Guide

■ Introduction for Editor or Reviewer

All the editor group members are to be assigned as a evaluator(editor or reviewer) to submitted journal papers at the discretion of the Editor-in-Chief. It will be informed by eMail with a Member Login ID and Password.

Once logined the Website via the Member Login menu in left as a evaluator, you can find out the paper assigned to you. You can evaluate it there. All the results of the evaluation are supposed to be shown in the Author Homepage in the real time manner. You can also enter the Author Homepage assigned to you by the Paper ID and the author's eMail address shown in your Evaluation Webpage. In the Author Homepage, you can communicate each other efficiently under the peer review policy. Please don't miss it!

All the editor group members are supposed to be candidates of a part of the editorial board, depending on their contribution which comes from history of ICACT TACT as an active evaluator. Because the main contribution comes from sincere paper reviewing role.

■ Role of the Editor

The editor's primary responsibilities are to conduct the peer review process, and check the final camera-ready manuscripts for any technical, grammatical or typographical errors.

As a member of the editorial board of the publication, the editor is responsible for ensuring that the publication maintains the highest quality while adhering to the publication policies and procedures of the ICACT TACT(Transactions on the Advanced Communications Technology).

For each paper that the editor-in-chief gets assigned, the Secretariat of ICACT Journal will send the editor an eMail requesting the review process of the paper.

The editor is responsible to make a decision on an "accept", "reject", or "revision" to the Editor-in-Chief via the Evaluation Webpage that can be shown in the Author Homepage also.

■ Deadlines for Regular Review

Editor-in-Chief will assign a evaluation group(a Editor and 2 reviewers) in a week upon receiving a completed Journal paper submission. Evaluators are given 2 weeks to review the paper. Editors are given a week to submit a recommendation to the Editor-in-Chief via the evaluation Webpage, once all or enough of the reviews have come in. In revision case, authors have a maximum of a month to submit their revised manuscripts. The deadlines for the regular review process are as follows:
Evaluation Procedure

<table>
<thead>
<tr>
<th>Evaluation Procedure</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection of Evaluation Group</td>
<td>1 week</td>
</tr>
<tr>
<td>Review processing</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Editor’s recommendation</td>
<td>1 week</td>
</tr>
<tr>
<td>Final Decision Noticing</td>
<td>1 week</td>
</tr>
</tbody>
</table>

■ Making Decisions on Manuscript

Editor will make a decision on the disposition of the manuscript, based on remarks of the reviewers. The editor's recommendation must be well justified and explained in detail. In cases where the revision is requested, these should be clearly indicated and explained. The editor must then promptly convey this decision to the author. The author may contact the editor if instructions regarding amendments to the manuscript are unclear. All these actions could be done via the evaluation system in this Website. The guidelines of decisions for publication are as follows:

<table>
<thead>
<tr>
<th>Decision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept</td>
<td>An accept decision means that an editor is accepting the paper with no further modifications. The paper will not be seen again by the editor or by the reviewers.</td>
</tr>
<tr>
<td>Reject</td>
<td>The manuscript is not suitable for the ICACT TACT publication.</td>
</tr>
<tr>
<td>Revision</td>
<td>The paper is conditionally accepted with some requirements. A revision means that the paper should go back to the original reviewers for a second round of reviews. We strongly discourage editors from making a decision based on their own review of the manuscript if a revision had been previously required.</td>
</tr>
</tbody>
</table>

■ Role of the Reviewer

Reviewer Webpage:

Once logined the Member Login menu in left, you can find out papers assigned to you. You can also login the Author Homepage assigned to you with the paper ID and author’s eMail address. In there you can communicate each other via a Communication Channel Box.

Quick Review Required:

You are given 2 weeks for the first round of review and 1 week for the second round of review. You must agree that time is so important for the rapidly changing IT technologies and applications trend. Please respect the deadline. Authors undoubtedly appreciate your quick review.
Anonymity:

Do not identify yourself or your organization within the review text.

Review:

Reviewer will perform the paper review based on the main criteria provided below. Please provide detailed public comments for each criterion, also available to the author.

- How this manuscript advances this field of research and/or contributes something new to the literature?
- Relevance of this manuscript to the readers of TACT?
- Is the manuscript technically sound?
- Is the paper clearly written and well organized?
- Are all figures and tables appropriately provided and are their resolution good quality?
- Does the introduction state the objectives of the manuscript encouraging the reader to read on?
- Are the references relevant and complete?

Supply missing references:

Please supply any information that you think will be useful to the author in revision for enhancing quality of the paper or for convincing him/her of the mistakes.

Review Comments:

If you find any already known results related to the manuscript, please give references to earlier papers which contain these or similar results. If the reasoning is incorrect or ambiguous, please indicate specifically where and why. If you would like to suggest that the paper be rewritten, give specific suggestions regarding which parts of the paper should be deleted, added or modified, and please indicate how.
Journal Procedure

Dear Author,

➤ You can see all your paper information & progress.

➤ Step 1. Journal Full Paper Submission

Using the Submit button, submit your journal paper through ICACT Website, then you will get new paper ID of your journal, and send your journal Paper ID to the Secretariat@icact.org for the review and editorial processing. Once you got your Journal paper ID, never submit again! Journal Paper/CRF Template

➤ Step 2. Full Paper Review

Using the evaluation system in the ICACT Website, the editor, reviewer and author can communicate each other for the good quality publication. It may take about 1 month.

➤ Step 3. Acceptance Notification

It officially informs acceptance, revision, or reject of submitted full paper after the full paper review process.

<table>
<thead>
<tr>
<th>Status</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance</td>
<td>Go to next Step.</td>
</tr>
<tr>
<td>Revision</td>
<td>Re-submit Full Paper within 1 month after Revision Notification.</td>
</tr>
<tr>
<td>Reject</td>
<td>Drop everything.</td>
</tr>
</tbody>
</table>

➤ Step 4. Payment Registration

So far it's free of charge in case of the journal promotion paper from the registered ICACT conference paper! But you have to regist it, because you need your Journal Paper Registration ID for submission of the final CRF manuscripts in the next step's process. Once you get your Registration ID, send it to Secretariat@icact.org for further process.

➤ Step 5. Camera Ready Form (CRF) Manuscripts Submission

After you have received the confirmation notice from secretariat of ICACT, and then you are allowed to submit the final CRF manuscripts in PDF file form, the full paper and the Copyright Transfer Agreement. Journal Paper Template, Copyright Form Template, BioAbstract Template,
Journal Submission Guide

All the Out-Standing ICACT conference papers have been invited to this "ICACT Transactions on the Advanced Communications Technology" Journal, and also welcome all the authors whose conference paper has been accepted by the ICACT Technical Program Committee, if you could extend new contents at least 30% more than pure content of your conference paper. Journal paper must be followed to ensure full compliance with the IEEE Journal Template Form attached on this page.

How to submit your Journal paper and check the progress?

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1. Submit</td>
<td>Using the Submit button, submit your journal paper through ICACT Website, then you will get new paper ID of your journal, and send your journal Paper ID to the Secretariat@icact.org for the review and editorial processing. Once you got your Journal paper ID, never submit again! Using the Update button, you can change any information of journal paper related or upload new full journal paper.</td>
</tr>
<tr>
<td>Step 2. Confirm</td>
<td>Secretariat is supposed to confirm all the necessary conditions of your journal paper to make it ready to review. In case of promotion from the conference paper to Journal paper, send us all the .DOC(or Latex) files of your ICACT conference paper and journal paper to evaluate the difference of the pure contents in between at least 30% more to avoid the self replication violation under scrutiny. The pure content does not include any reference list, acknowledgement, Appendix and author biography information.</td>
</tr>
<tr>
<td>Step 3. Review</td>
<td>Upon completing the confirmation, it gets started the review process thru the Editor & Reviewer Guideline. Whenever you visit the Author Homepage, you can check the progress status of your paper there from start to end like this, "Confirm OK! -> Gets started the review process -> ...", in the Review Status column. Please don't miss it!</td>
</tr>
</tbody>
</table>
Journal Editorial Board

■ Editor-in-Chief

Prof. Thomas Byeongnam YOON, PhD.
Founding Editor-in-Chief
ICACT Transactions on the Advanced Communications Technology (TACT)

■ Editors

Prof. Jun-Chul Chun, Kyonggi University, Korea
Dr. JongWon Kim, GIST (Gwangju Institute of Science & Technology), Korea
Dr. Xi Chen, State Grid Corporation of China, China
Prof. Arash Dana, Islamic Azad university, Central Tehran Branch, Iran
Dr. Pasquale Pace, University of Calabria - DEIS - Italy, Italy
Dr. Mitch Haspel, Stochastikos Solutions R&D, Israel
Prof. Shintaro Uno, Aichi University of Technology, Japan
Dr. Tony Tsang, Hong Kong Polytechnic University, Hong Kong
Prof. Kwang-Hoon Kim, Kyonggi University, Korea
Prof. Rosilah Hassan, Universiti Kebangsaan Malaysia(UKM), Malaysia
Dr. Sung Moon Shin, ETRI, Korea
Dr. Takahiro Matsumoto, Yamaguchi University, Japan
Dr. Christian Esteve Rothenberg, CPqD - R&D Center for. Telecommunications, Brazil
Prof. Lakshmi Prasad Saikia, Assam down town University, India
Prof. Moo Wan Kim, Tokyo University of Information Sciences, Japan
Prof. Yong-Hee Jeon, Catholic Univ. of Daegu, Korea
Dr. E.A.Mary Anita, Prathyusha Institute of Technology and Management, India
Dr. Chun-Hsin Wang, Chung Hua University, Taiwan
Prof. Wilaiporn Lee, King Mongkut's University of Technology North, Thailand
Dr. Zhi-Qiang Yao, XiangTan University, China
Prof. Bin Shen, Chongqing Univ. of Posts and Telecommunications (CQUPT), China
Prof. Vishal Bharti, Dronacharya College of Engineering, India
Dr. Marsono, Muhammad Nadzir, Universiti Teknologi Malaysia, Malaysia
Mr. Muhammad Yasir Malik, Samsung Electronics, Korea
Prof. Yeonseung Ryu, Myongji University, Korea
Dr. Kyuchang Kang, ETRI, Korea
Prof. Plamena Zlateva, BAS (Bulgarian Academy of Sciences), Bulgaria
Dr. Pasi Ojala, University of Oulu, Finland
Prof. CheonShik Kim, Sejong University, Korea
Dr. Anna bruno, University of Salento, Italy
Prof. Jesuk Ko, Gwangju University, Korea
Dr. Saba Mahmood, Air University Islamabad Pakistan, Pakistan
Prof. Zhiming Cai, Macao University of Science and Technology, Macau
Prof. Man Soo Han, Mokpo National Univ., Korea
Mr. Jose Gutierrez, Aalborg University, Denmark
Ontology Modification Using Ontological-Semantic Rules

Anna YANG*, Sung Moon CHUN**, and Jae-Gon KIM*

*School of Electronics and Information Engineering, Korea Aerospace University, Korea
**Insignal, Korea
Detection and Recognition of Hand Gesture for Wearable Applications in IoMT

Anna YANG*, Sung Moon CHUN**, and Jae-Gon KIM*

*School of Electronics and Information Engineering, Korea Aerospace University, Korea
**Insignal, Korea

Abstract—To support an efficient media consumption in wearable and IoT (Internet of Things) environments, the standardization of IoMT (Internet of Media-Things) is in the progress in MPEG (Moving Picture Experts Group). In this paper, we present a method to detect and to recognize hand gestures for generating hand gesture-based commands to control the media consumption in smart glasses. First, we present a detection method that utilizes depth image obtained by incoming stereo image sequences and skin color information in a combined way. Secondly, we are going to present the representation of detected hand contours based on Bézier curve as metadata to provide an interoperable interface between a detection module and a recognition module in an IoMT framework. In addition, the comparison with existing standard tools that can be used for hand gesture representation is given. In the recognition module, the detected hand contour is reconstructed by parsing delivered metadata. A set of hand gestures featured with diverse combination of open fingers and rotational angles is used for the hand gesture recognition in the proposed recognition method. Finally, the recognized hand gesture is mapped into one of the pre-defined set of gestures predefined in a given application. Diverse hand gestures featured with different open fingers and hand angles can be identified mainly based on convexity defects of hand contour. A post processing is applied on the recognition results that show that the proposed method gives quite stable performance of detection and recognition of hand gesture along with interoperable interface between both processing modules.

Keyword—MPEG Internet of Media-Things (IoMT), Smart Glasses, Hand Gesture Recognition, Hand Gesture Detection, Bézier curve

I. INTRODUCTION

RECENTLY, the standardization of Internet of Media-Things (IoMT) is undergoing in MPEG to support efficient media consumption in wearable and IoT (Internet of Things) environments [1]. The normative parts of the IoMT are mainly the specification of API (Application Programming Interface) and the representation of information to be delivered over the interfaces between Media Things (called as MThings) that can be wearable/IoT devices or processing units in media-centric IoT and wearable applications. On the other hand, as hand gestures are attracting more attention as NUI (Natural User Interface) of wearable devices such as smart glasses, efficient detection and recognition of hand gestures is strongly required [2]. In this paper, we propose a hand gesture detection and recognition method for controlling the media consumption and/or wearable device itself. In addition, the XML (eXtensible Markup Language)-based description of hand gesture is presented to support interoperable interfaces in the context of IoMT standard. In the use cases of gesture-based wearable applications in IoMT [1], it is likely required that general hand gestures having any contour and/or trajectory should be described in an interoperable way in terms of two aspects: 1) hand gestures to be mapped into commands that are used for interactions between a user and a wearable device should be general enough to support diverse potential use cases; 2) detection of hand gestures and their recognition can be done separately in different processing units (PUs) to cope with the limitation of computational power of the wearable device.

We adopt a simple method of gesture detection that combines depth map and color image acquired from the incoming stereo image sequence, and represents the detected hand contour based on a Bézier curve as XML-based metadata. The detected hand contour delivered as a form of metadata is reconstructed in a recognition module. The reconstructed hand contour is recognized as one of the set of hand gestures predefined in a given application. Diverse types of hand gestures with different open fingers and hand angles can be identified mainly based on convexity defects of hand contour. A post processing is applied on the recognition results of consecutive frames in temporal domain to obtain more reliable results. In addition, the results of comparison with the existing MPEG standards that can be used for description of hand gesture are presented.

The rest of the paper is organized as follows. In Section II, we present an introduction of MPEG IoMT and gesture-based wearable application scenarios considered in IoMT. A gesture detection method is presented in Section III. A method of hand contour description using Bézier curve along with the comparison with the existing MPEG standard is presented in Section IV. In Section V, a hand gesture recognition method using the described hand contour is presented, and experimental results are presented in Section VI. Finally, the conclusions are given in Section VII.
II. GESTURE-BASED WEARABLE APPLICATION IN IoMT

Gesture-based smart glasses applications are considered as one of the typical wearable use cases in IoMT [1], [3]. When a user wears smart glasses, hand gesture is becoming a promising user interface that allows a user to use both hands without operating an input device such as keyboard or mouse, etc. In such applications, in order for a user to control efficiently media consumption, the hand gesture recognition should be supported in an IoMT framework.

As shown in Fig. 1, user (user), MThing, and processing unit (PU) are key functional components of an IoMT framework. Media Thing is specified as a Thing capable of sensing, acquiring, actuating, or processing of media or metadata [1]. Smart glasses and processing unit are kinds of MThing. In order to support various types of hand gesture-based use cases including the control of media consumption in a wearable device and/or device itself, hand gestures which include static ones or dynamic ones such as a trajectory of hand motion should be recognized into a user invoked command.

As shown in Fig. 1, the incoming stereo image sequence acquisitioned by a stereo camera mounted on the smart glasses is transmitted to a PU, in which user’s gesture is detected (① in Fig. 1). It is assumed that gesture detection and gesture recognition are more likely to be performed in separate PUs with the considerations as follows: 1) The detected hand contour or trajectory can be recognized as one of various types of gesture to be mapped into a command depending on the given application rather than limiting the gesture types, and/or 2) the computational power of a PU may not be sufficient to perform both processings of detection and recognition in a wearable environment [4], [5]. Due to the nature of the smart glasses, it is assumed that a user’s hand pose is given at a certain short distance range (30cm ~ 50cm) from the camera. Based on this assumption, a rough hand region is simply obtained by thresholding the value of the depth map. Then, the detected rough hand region is refined by using color information and morphological filtering, which results in more accurate hand contour.

Fig. 2 illustrates the overall procedure of hand gesture detection that combines depth map and color image extracted from the incoming stereo image sequence. A depth map is generated by stereo matching of the incoming stereo images. In addition, we briefly introduce the existing MPEG tools of MPEG-U and MPEG-7 Curvature Scale-Space (CSS) that can be used for hand gesture description, and present the comparison results between the MPEG-7 CSS and the Bézier curve based description in terms of several aspects.

A. Bézier Curve Based Description

As mentioned before, the detected hand contour to be delivered to a recognition module should be represented in an interoperable way to support diverse types of hand gestures in an IoMT framework. In this paper, we present an XML schema for describing hand contour based on Bézier curve. In this paper, we present an XML schema for describing hand contour based on Bézier curve. In addition, we briefly introduce the existing MPEG tools of MPEG-U and MPEG-7 Curvature Scale-Space (CSS) that can be used for hand gesture description, and present the comparison results between the MPEG-7 CSS and the Bézier curve based description in terms of several aspects.
determine the curvature of the curve. In this paper, we use a cubic Bézier curve with the order three, so there are two control points \(P_1, P_2 \) in a curve representation as shown in Fig. 4.

Fig. 3 shows an example of the result of this representation process. The given hand contour consists of a set of curves each of which is expressed by four Bezier points in the case of cubic Bézier curve. For example, four Bézier points are shown in Fig. 3 (b) (starting point, two control points, and end point are given as \((P_{0x}, P_{0y}), (P_{1x}, P_{1y}), (P_{2x}, P_{2y})\), and \((P_{3x}, P_{3y})\), respectively). As a result, a list of Bezier points representing a set of consecutive curves corresponding to the detected hand contour is obtained as shown in Fig. 3 (a).

\[
\text{Bezier}(n, t) = f(t) = \sum_{i=0}^{n} \binom{n}{i} \cdot (1-t)^{n-i} \cdot t^i
\]

(1)

Fig. 3. An example of Bézier curve representation

Fig. 4. The 3rd-order Bézier curve representation using four points \((P_0: \text{start point } P_3: \text{end point})\)

Fig. 5 shows an algorithm for representing a hand contour using a set of Bézier curves. To draw a given hand contour using a set of Bézier curves, the whole contour is iteratively divided until the fitting error between the Bézier curve based represented curve and the given contour is less the allowed error predefined. In other words, at the beginning, the entire hand contour is represented by a single Bézier curve. Then, if the fitting error using a Bézier curve is larger than a preset threshold \(\text{max_error}\), then the given contour is divided into two and each curve is represented by a Bézier curve. This contour dividing and representation process is repeated until the required accuracy is met. The fitting error can be defined as the distance between two curves. If there are less than four points left on the contour, then joining the remaining points are not bitted by a Bézier curve. As a result, the accuracy of contour representation is adjusted by setting the value of maximum fitting error, and the number of Bézier curve is determined accordingly.

To describe a list of Bézier points corresponding to the detected hand contour as XML-formatted metadata, we design a metadata schema as shown in Fig. 6. The detected hand contour can be reconstructed by parsing the delivered metadata in the recognition module. Fig. 7 shows an example of the reconstructed hand contour from the metadata.

The types of hand gesture can be static or dynamic. In the case of dynamic type, a trajectory of hand motion can be mapped into a user-invoked command. As shown in Fig. 6, the HandGestureType allows us to describe static gesture or dynamic gesture by using the element of HandContour or HandTrajectory, respectively. A hand contour consists of a set of consecutive curves each of which is represented by a Bézier curve. The set of consecutive curves are described by the element of GroupBezierCurve. A Bezier curve is represented by a start point, end point, and control points. The end point of a curve is identical to the start point of the following curve since a set of curves are successively connected.

Therefore, as shown in Fig. 6 (b) of GroupBezierType, the InitialStartPoint describes the start point of the first curve,
B. Comparison with the existing MPEG Tools

There are few tools that can be used to describe hand gesture or hand contour in the MPEG such MPEG-7 CSS and MPEG-U Part 2. In this sub-section, we present the review of the existing such tools, and present the comparison results between MPEG-7 CSS and Bézier curve based description of hand contour in the context of IoMT.

MPEG-U Part 2 specifies Advanced User Interaction (AUI) interface to enhance interaction between scene descriptions and system resources [6]. In the data format of the AUI interface specified in MPEG-U Part 2 as shown in Table 1, a set of hand postures and gesture patterns have been specified to support the intuitive hand-based interaction for scene description.

<table>
<thead>
<tr>
<th>Pattern Type</th>
<th>Geometric</th>
<th>Symbolic</th>
<th>Hand Posture</th>
<th>Hand Gesture</th>
<th>Touch</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Point, Line, Rect, Arc, Circle</td>
<td>Victory, Heart, Rock, Scissors, Paper, Okay</td>
<td>OpenPalm, Fist, Pointing, Thumb-Up, Thumb-Down, Grap</td>
<td>Push, Pull, Slap, Slap_right, Slap_top, Slap_bottom, Circle_clockwise, Circle_anti-clockwise, waving, check</td>
<td>Tap, Double Tap, Press, Dragg, Rotate, Flick</td>
<td></td>
</tr>
</tbody>
</table>

TABLE I

DATA FORMAT OF AUI INTERFACE SPECIFIED BY MPEG-U PART 2

MPEG-7 specifies a set of visual descriptors to describe various visual features mainly focusing on content-based indexing and retrieval applications [7]. In MPEG-7, the shape descriptor of the curvature scale space (CSS) is directly related to the description of hand contour and hand motion trajectory, respectively.

The MPEG-7 CSS descriptor which is a contour based shape descriptor treats shape boundary as a 1D signal, and analyzes this 1D signal in a scale space [7], [8]. By examining zero crossings of curvature at different scales, the concavities/convexities of shape contour are found. These concavities/convexities are useful for shape description because they represent the perceptual features of shape contour.

The existing MPEG-U Part 2 and MPEG-7 CSS may not be enough for describing hand gesture/contour in the context of IoMT as follows. An environment of hand gesture recognition in smart glasses is slightly different with that is considered in MPEG-U in terms of camera view and camera location. A smart glass is worn on a user’s face and hand posture is acquisitioned within a short distance range while it is assumed that the viewpoint of the camera is located on the user’s front torso in MPEG-U. It is likely that more rich and elaborate gestures are used in smart glasses to support various hand gesture based use cases. However, a set of patterns of hand posture and hand gesture defined in MPEG-U Part 2 are very limited.

The MPEG-7 CSS is a shape descriptor mainly focusing on the applications of content-based indexing and retrieval, therefore it has a few limitations in in the context of IoMT as follows. The characteristic of rotation invariant representation of the CSS would be a shortcoming since hand postures with different angle could have different meanings in the description of hand contour. In addition, the detected hand contour should be reconstructed from the description to be recognized, which is not supported by CSS. As shown in the comparison results of Table 2, the Bézier curve based description meets all functionalities required in the hand gesture based wearable applications in IoMT.

TABLE II

COMPARISON BETWEEN MPEG-7 CSS, MPEG-U PART 2, AND BÉZIER CURVE BASED DESCRIPTION TOOLS IN TERMS OF FUNCTIONALITIES

<table>
<thead>
<tr>
<th>Key Functionalities</th>
<th>MPEG-7 CSS</th>
<th>MPEG-U Part 2</th>
<th>Bezier Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differentiation of rotation</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Applicability of diverse recognition methods</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Extensibility of gesture types</td>
<td>O</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Reconstructability</td>
<td>X</td>
<td>–</td>
<td>O</td>
</tr>
</tbody>
</table>

In terms of hand contour description, we present the details on the experiment of comparison between MPEG-7 CSS and Bézier curve based description in Table 3. The results shows that both descriptors give similar description performance in terms of complexity and efficiency (description size). However, only the Bézier curve based descriptor allows the reconstruction of contour from the description as well as scalable description.

V. HAND GESTURE RECOGNITION

Fig. 8 shows the overall procedure of hand gesture recognition. Delivered metadata describing the detected contour is parsed into a list of Bezier points from which the detected contour is reconstructed. In order to recognize the hand gesture from the reconstructed hand contour, as an initial step, we generate a reference mask from the contour of open palm of a user. A reference mask gives initial values of features that are extracted and used as reference values for the subsequent recognition step such as convexity defects, degree of rotation, and gravity center.
region by morphological operations. For this purpose, the finger region is removed from the hand coordinate of pixels, which are used for recognition of open finger position are superimposed on the reconstructed hand contour for each initial features of the reference mask. The details on the algorithm for hand gesture recognition on the recognition algorithm, in which states of each finger as initial defects and the current defects. Fig. 9 shows the details on the procedure of the hand gesture recognition from reconstructed hand contour by parsing the delivered metadata.

Using convex hall, we can obtain some defects which allow us to figure out the position of each finger, and the gradient moment is used to obtain the center of gravity and degree of rotation. The gradient of moment μ_{pq} and the degree of rotation θ are obtained from the palm region by using Eq. (2) and Eq. (3), respectively. In order to obtain palm region, the finger region is removed from the hand region by morphological operations. x and y mean a coordinate of pixels, \overline{x} and \overline{y} mean a mean of x and y in the palm region, respectively.

$$\mu_{pq} = \sum_{(x,y) \in R} (x - \overline{x})^p (y - \overline{y})^q$$

(2)

$$\theta = \frac{1}{2} \tan^{-1} \frac{2\mu_{12}}{\mu_{02} - \mu_{01}}$$

(3)

In the recognition step, the reference mask is superimposed on the reconstructed hand contour for each frame depending on the rotation of degree. In this way, each finger’s state of open or close is identified by comparing the initial defects and the current defects. Fig. 9 shows the details on the recognition algorithm, in which states of each finger as well as the degree of rotation are identified based on the initial features of the reference mask.

The details on the algorithm for hand gesture recognition are given in Fig. 9. When the reconstructed hand contour is inputted for recognition of hand gesture. First of all, 7 defects which are used for recognition of open finger position are founded by using convexity defect algorithm. To match between the reference mask and reconstructed hand contour, after then, the degree of rotation of reconstructed hand contour should be calculated by using the gradient of moment. In this way, the reference mask is able to be mapped into the hand gesture contour according to its rotation.

In order to figure out whether the finger’s state is open or close, an ellipse is drawn in the region finger, and if there are more pixels in the finger region than the threshold value inside of the ellipse, it is regarded that the corresponding finger is spread. It can be also recognized which finger is spread by checking the defects inside of ellipse. Finally, the gesture of ‘OK’ sign can be recognized by checking the existence of a closed contour inside of the hand contour.

As the result of the recognition, the command corresponding to the recognized hand gesture is generated by mapping the recognized hand gesture into one of the set of commands predefined in a given application.

Using convex hall, we can obtain some defects which allow us to figure out the position of each finger, and the gradient moment is used to obtain the center of gravity and degree of rotation. The gradient of moment μ_{pq} and the degree of rotation θ are obtained from the palm region by using Eq. (2) and Eq. (3), respectively. In order to obtain palm region, the finger region is removed from the hand region by morphological operations. x and y mean a coordinate of pixels, \overline{x} and \overline{y} mean a mean of x and y in the palm region, respectively.

$$\mu_{pq} = \sum_{(x,y) \in R} (x - \overline{x})^p (y - \overline{y})^q$$

(2)

$$\theta = \frac{1}{2} \tan^{-1} \frac{2\mu_{12}}{\mu_{02} - \mu_{01}}$$

(3)

In the recognition step, the reference mask is superimposed on the reconstructed hand contour for each frame depending on the rotation of degree. In this way, each finger’s state of open or close is identified by comparing the initial defects and the current defects. Fig. 9 shows the details on the recognition algorithm, in which states of each finger as well as the degree of rotation are identified based on the initial features of the reference mask.

The details on the algorithm for hand gesture recognition are given in Fig. 9. When the reconstructed hand contour is inputted for recognition of hand gesture. First of all, 7 defects which are used for recognition of open finger position are founded by using convexity defect algorithm. To match between the reference mask and reconstructed hand contour, after then, the degree of rotation of reconstructed hand contour should be calculated by using the gradient of moment. In this way, the reference mask is able to be mapped into the hand gesture contour according to its rotation.

In order to figure out whether the finger’s state is open or close, an ellipse is drawn in the region finger, and if there are more pixels in the finger region than the threshold value inside of the ellipse, it is regarded that the corresponding finger is spread. It can be also recognized which finger is spread by checking the defects inside of ellipse. Finally, the gesture of ‘OK’ sign can be recognized by checking the existence of a closed contour inside of the hand contour.

As the result of the recognition, the command corresponding to the recognized hand gesture is generated by mapping the recognized hand gesture into one of the set of commands predefined in a given application.

Using convex hall, we can obtain some defects which allow us to figure out the position of each finger, and the gradient moment is used to obtain the center of gravity and degree of rotation. The gradient of moment μ_{pq} and the degree of rotation θ are obtained from the palm region by using Eq. (2) and Eq. (3), respectively. In order to obtain palm region, the finger region is removed from the hand region by morphological operations. x and y mean a coordinate of pixels, \overline{x} and \overline{y} mean a mean of x and y in the palm region, respectively.

$$\mu_{pq} = \sum_{(x,y) \in R} (x - \overline{x})^p (y - \overline{y})^q$$

(2)

$$\theta = \frac{1}{2} \tan^{-1} \frac{2\mu_{12}}{\mu_{02} - \mu_{01}}$$

(3)

In the recognition step, the reference mask is superimposed on the reconstructed hand contour for each frame depending on the rotation of degree. In this way, each finger’s state of open or close is identified by comparing the initial defects and the current defects. Fig. 9 shows the details on the recognition algorithm, in which states of each finger as well as the degree of rotation are identified based on the initial features of the reference mask.

The details on the algorithm for hand gesture recognition are given in Fig. 9. When the reconstructed hand contour is inputted for recognition of hand gesture. First of all, 7 defects which are used for recognition of open finger position are founded by using convexity defect algorithm. To match between the reference mask and reconstructed hand contour, after then, the degree of rotation of reconstructed hand contour should be calculated by using the gradient of moment. In this way, the reference mask is able to be mapped into the hand gesture contour according to its rotation.

In order to figure out whether the finger’s state is open or close, an ellipse is drawn in the region finger, and if there are more pixels in the finger region than the threshold value inside of the ellipse, it is regarded that the corresponding finger is spread. It can be also recognized which finger is spread by checking the defects inside of ellipse. Finally, the gesture of ‘OK’ sign can be recognized by checking the existence of a closed contour inside of the hand contour.
As shown in Eq. (4), the value of $R_{\text{ref, mask}}$, the angle of reference mask that should be rotated when it is superimposed on the hand contour is compensated with the difference of rotational angle of palm and gesture.

$$R_{\text{ref, mask}} = \left(A_{\text{gesture}} - A_{\text{mask}} + (A_{\text{palm}} - A_{\text{gesture}}) \right) \frac{\pi}{180}$$

(4)

The obtained finger region is used for identifying whether a finger is open or not. In other words, we apply an ellipse to each finger regions, and determine the existence of finger according to the number of pixel lies inside the region overlaid ellipse. If the number of pixel is larger than threshold, then the existence of finger is true, which is marked ‘1’.

Finally, a post processing is applied on the recognition results of consecutive frames in temporal domain to reduce recognition error in each frame. The recognition error is occurred by not only in the process of changing hand gestures but also by fine shaking of hand. By accumulating the result of each frame, more reliable recognition result can be obtained for a given duration in the temporal post processing.

VI. EXPERIMENTAL RESULTS

In the experiment, a set of hand gestures to be recognized is given in Fig. 11, which includes diverse types of hand gesture with different combination of open fingers, different hand postures with the same number of fingers, and ‘OK’ sign. Using the seven defect points, it is possible to recognize which fingers are open as well as the number of open fingers. The proposed method uses the number of finger contour to figure out the number of open finger, and the position of open finger is recognized by using ellipse and convexity defects.

Example results of recognition are as shown in Fig. 12. As a result of hand gesture recognition, the position of each finger is obtained as ‘1’ (open) or ‘0’ (closed). The binary code representing the position of five fingers are compared with those of the predefined gestures. Finally, the gesture image corresponding to the matched gesture is displayed as a final result as shown in Fig. 13. In addition, the gesture of ‘OK’ sign can be recognized by checking the existence of a closed contour inside the contour.

Some examples cases of final recognition results are shown in Fig. 13. The left and right images are the stereo images acquired by the stereo camera, and the centered small image shows the final recognition result. The example results for the same number of fingers with different postures are shown in Fig. 13 (a). Fig. 13 (b) shows the recognition result for the ‘OK’ sign, and the recognition result depending on the degree of rotation of the hand is shown in Fig. 15 (c). In this way, any hand posture can be identified and mapped into the corresponding gesture based user’s command in wearable applications.

In the experiments, to measure the recognition accuracy of the proposed method, we use a pre-recorded video in addition to real-time video capturing hand gesture. The experimental conditions are summarized in Table 4, and the recognition accuracy is measure by using Eq. (5).

$$\text{Recog. accuracy}(\%) = \frac{\text{num of accurately recognized frame}}{\text{num of total frame}}$$

(5)
Table 5 shows the performance of proposed method in terms of recognition accuracy measured by Eq. (5). The comparison results are for both cases of pre-recorded video and real-time video with and without the temporal post-processing.

Pre-recorded video are captured in an ideal environment without illumination change and no movement of hand location except hand gestures themselves. In such ideal environment, we obtained the accuracy of 97.2% in a recognition of finger numbers and 95.0% of recognition of finger position, respectively. However, in experiments on real-time video captured by the head mounted camera, illumination and location of hand are not stable due to a little motion of head. As a result, the recognition accuracies are decreased to 95.2% and 89.9%, respectively.

With the temporal post-processing, the recognition accuracy of the number of finger and finger position using pre-recorded video are 100.0% and 98.6%, respectively. In the case of real-time video, the accuracies are given by 97.0% and 93.0%, respectively. This results mean that the proposed temporal post processing significantly enhances the performance of recognition accuracy higher.

TABLE IV
EXPERIMENTAL CONDITIONS

| PC | Processor: Inter® Core™ i7-6700 CPU @3.40 GHz
| Memory: 16.0GB | OS: Windows 10, x64
| Input stereo image sequence | Frame rate: 6 frames/sec
| Resolution: 1280 * 720 | Number of gesture type: 12 types
| Number of Frame: 252 frames |

![Image](image1.jpg)

(a) Same number of fingers but different postures
(b) OK sign
(c) Gesture with different degree of rotations

Fig. 13. Some final results of hand gesture recognition

Table IV
EXPERIMENTAL RESULTS OF RECOGNITION ACCURACY

<table>
<thead>
<tr>
<th>Test condition</th>
<th>Pre-recorded video</th>
<th>Real-time video</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Finger number</td>
<td>Finger position</td>
</tr>
<tr>
<td>Without post processing</td>
<td>97.2</td>
<td>95.0</td>
</tr>
<tr>
<td>With post processing</td>
<td>100.0</td>
<td>98.6</td>
</tr>
</tbody>
</table>

VII. CONCLUSION

In this paper, we presented a hand gesture detection and recognition method for gesture-based smart glasses applications in the context of MPEG IoMT, which aims to support efficient media consumption in IoT and wearable environments. In addition, we presented a method of representation of hand contours using Bézier curves to provide an interoperable interface between processing units each of which perform gesture detection and gesture recognition, respectively, in an IoMT framework.

Experimental results showed that the proposed methods of detection and recognition of hand gestures could be effectively applied to wearable applications such as smart glasses in real time. In addition, we have found that the Bézier curve based descriptor is more appropriate to support hand gesture based use cases than the MPEG-7 CSS and MPEG-U Part 2 based on the comparison analysis.

ACKNOWLEDGMENT

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by Korean Government (MSIT) (R0127-15-1015). This paper is an extension of the ICACT 2017 conference paper.

REFERENCES

Anna Yang received the MS. degree from Korea Aerospace University, Korea, in 2017. She is currently working toward the Ph.D degree in the Department of Electronics and Information Engineering, Korea Aerospace University, Goyang-city, Korea. Her current research interests include IoT/wearable media applications, and MPEG standards.

Jae-Gon Kim received the B.S. degree in electronics engineering from Kyungpook National University, Daegu, Korea, in 1990, the M.S. and Ph.D degrees in electronical engineering from the Korea Advanced Institute of Science and Technology (KAIST), Daegu, Korea, in 1992 and 2005, respectively. From 1992 to 2007, he was with Electronics and Telecommunications Research Institute (ETRI), where he was involved in the development of digital broadcasting media services, MPEG-7/7/21 standards and related applications, and convergence media services.
Sung Moon Chun received the B. S. degree from Sungkyunkwan University, Korea, in 1990. From 1990 to 2000, he was with Hyundai Electronics, where he was involved in the development of HDTV, MPEG-2/4 standards and related video codec technologies. From 2002 to 2012, he was with ECT Inc, where he was involved in the development of Semiconductor and related stereo video technologies. He is currently CTO in Insignal Inc. His research interests include video compression, virtual reality, and wearable applications.