

Journal Editorial Board

 Editor-in-Chief

Prof. Thomas Byeongnam YOON, PhD.

Founding Editor-in-Chief

ICACT Transactions on the Advanced Communications Technology (TACT)

 Editors

 Prof. Jun-Chul Chun, Kyonggi University, Korea
 Dr. JongWon Kim, GIST (Gwangju Institute of Science & Technology), Korea
 Dr. Xi Chen, State Grid Corparation of China, China
 Prof. Arash Dana, Islamic Azad university , Central Tehran Branch, Iran
 Dr. Pasquale Pace, University of Calabria - DEIS - Italy, Italy
 Dr. Mitch Haspel, Stochastikos Solutions R&D, Israel
 Prof. Shintaro Uno, Aichi University of Technology, Japan
 Dr. Tony Tsang, Hong Kong Polytechnic UNiversity, Hong Kong
 Prof. Kwang-Hoon Kim, Kyonggi University, Korea
 Prof. Rosilah Hassan, Universiti Kebangsaan Malaysia(UKM), Malaysia
 Dr. Sung Moon Shin, ETRI, Korea
 Dr. Takahiro Matsumoto, Yamaguchi University, Japan
 Dr. Christian Esteve Rothenberg, CPqD - R&D Center for. Telecommunications, Brazil
 Prof. Lakshmi Prasad Saikia, Assam down town University, India
 Prof. Moo Wan Kim, Tokyo University of Information Sciences, Japan
 Prof. Yong-Hee Jeon, Catholic Univ. of Daegu, Korea
 Dr. E.A.Mary Anita, Prathyusha Institute of Technology and Management, India
 Dr. Chun-Hsin Wang, Chung Hua University, Taiwan
 Prof. Wilaiporn Lee, King Mongkut’s University of Technology North, Thailand
 Dr. Zhi-Qiang Yao, XiangTan University, China
 Prof. Bin Shen, Chongqing Univ. of Posts and Telecommunications (CQUPT), China
 Prof. Vishal Bharti, Dronacharya College of Engineering, India
 Dr. Marsono, Muhammad Nadzir , Universiti Teknologi Malaysia, Malaysia
 Mr. Muhammad Yasir Malik, Samsung Electronics, Korea
 Prof. Yeonseung Ryu, Myongji University, Korea
 Dr. Kyuchang Kang, ETRI, Korea
 Prof. Plamena Zlateva, BAS(Bulgarian Academy of Sciences), Bulgaria
 Dr. Pasi Ojala, University of Oulu, Finland
 Prof. CheonShik Kim, Sejong University, Korea
 Dr. Anna bruno, University of Salento, Italy
 Prof. Jesuk Ko, Gwangju University, Korea
 Dr. Saba Mahmood, Air University Islamabad Pakistan, Pakistan
 Prof. Zhiming Cai, Macao University of Science and Technology, Macau
 Prof. Man Soo Han, Mokpo National Univ., Korea
 Mr. Jose Gutierrez, Aalborg University, Denmark

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

 Dr. Youssef SAID, Tunisie Telecom, Tunisia
 Dr. Noor Zaman, King Faisal University, Al Ahsa Hofuf, Saudi Arabia
 Dr. Srinivas Mantha, SASTRA University, Thanjavur, India
 Dr. Shahriar Mohammadi, KNTU University, Iran
 Prof. Beonsku An, Hongik University, korea
 Dr. Guanbo Zheng, University of Houston, USA
 Prof. Sangho Choe, The Catholic University of Korea, korea
 Dr. Gyanendra Prasad Joshi, Yeungnam University, korea
 Dr. Tae-Gyu Lee, Korea Institue of Industrial Technology(KITECH), korea
 Prof. Ilkyeun Ra, University of Colorado Denver, USA
 Dr. Yong Sun, Beijing University of Posts and Telecommunications, China
 Dr. Yulei Wu, Chinese Academy of Sciences, China
 Mr. Anup Thapa, Chosun University, korea
 Dr. Vo Nguyen Quoc Bao, Posts and Telecommunications Institute of Technology, Vietnam
 Dr. Harish Kumar, Bhagwant institute of technology, India
 Dr. Jin REN, North china university of technology, China
 Dr. Joseph Kandath, Electronics & Commn Engg, India
 Dr. Mohamed M. A. Moustafa, Arab Information Union (AIU), Egypt
 Dr. Mostafa Zaman Chowdhury, Kookmin University, Korea
 Prof. Francis C.M. Lau, Hong Kong Polytechnic University, Hong Kong
 Prof. Ju Bin Song, Kyung Hee University, korea
 Prof. KyungHi Chang, Inha University, Korea
 Prof. Sherif Welsen Shaker, Kuang-Chi Institute of Advanced Technology, China
 Prof. Seung-Hoon Hwang, Dongguk University, Korea
 Prof. Dal-Hwan Yoon, Semyung University, korea
 Prof. Chongyang ZHANG, Shanghai Jiao Tong University, China
 Dr. H K Lau, The Open University of Hong Kong, Honh Kong
 Prof. Ying-Ren Chien, Department of Electrical Engineering, National Ilan University, Taiwan
 Prof. Mai Yi-Ting, Hsiuping University of Science and Technology, Taiwan
 Dr. Sang-Hwan Ryu, Korea Railroad Research Institute, Korea
 Dr. Yung-Chien Shih, MediaTek Inc., Taiwan
 Dr. Kuan Hoong Poo, Multimedia University, Malaysia
 Dr. Michael Leung, CEng MIET SMIEEE, Hong Kong
 Dr. Abu sahman Bin mohd Supa'at, Universiti Teknologi Malaysia, Malaysia
 Prof. Amit Kumar Garg, Deenbandhu Chhotu Ram University of Science & Technology, India
 Dr. Jens Myrup Pedersen, Aalborg University, Denmark
 Dr. Augustine Ikechi Ukaegbu, KAIST, Korea
 Dr. Jamshid Sangirov, KAIST, Korea
 Prof. Ahmed Dooguy KORA, Ecole Sup. Multinationale des Telecommunications, Senegal
 Dr. Se-Jin Oh, Korea Astronomy & Space Science Institute, Korea
 Dr. Rajendra Prasad Mahajan, RGPV Bhopal, India
 Dr. Woo-Jin Byun, ETRI, Korea
 Dr. Mohammed M. Kadhum, School of Computing, Goodwin Hall, Queen's University , Canada
 Prof. Seong Gon Choi, Chungbuk National University, Korea
 Prof. Yao-Chung Chang, National Taitung University, Taiwan
 Dr. Abdallah Handoura, Engineering school of Gabes - Tunisia, Tunisia
 Dr. Gopal Chandra Manna, BSNL, India

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

 Dr. Il Kwon Cho, National Information Society Agency, Korea
 Prof. Jiann-Liang Chen, National Taiwan University of Science and Technology, Taiwan
 Prof. Ruay-Shiung Chang, National Dong Hwa University, Taiwan
 Dr. Vasaka Visoottiviseth, Mahidol University, Thailand
 Prof. Dae-Ki Kang, Dongseo University, Korea
 Dr. Yong-Sik Choi, Research Institute, IDLE co., ltd, Korea
 Dr. Xuena Peng, Northeastern University, China
 Dr. Ming-Shen Jian, National Formosa University, Taiwan
 Dr. Soobin Lee, KAIST Institute for IT Convergence, Korea
 Prof. Yongpan Liu, Tsinghua University, China
 Prof. Chih-Lin HU, National Central University, Taiwan
 Prof. Chen-Shie Ho, Oriental Institute of Technology, Taiwan
 Dr. Hyoung-Jun Kim, ETRI, Korea
 Prof. Bernard Cousin, IRISA/Universite de Rennes 1, France
 Prof. Eun-young Lee, Dongduk Woman s University, Korea
 Dr. Porkumaran K, NGP institute of technology India, India
 Dr. Feng CHENG, Hasso Plattner Institute at University of Potsdam, Germany
 Prof. El-Sayed M. El-Alfy, King Fahd University of Petroleum and Minerals, Saudi Arabia
 Prof. Lin You, Hangzhou Dianzi Univ, China
 Mr. Nicolai Kuntze, Fraunhofer Institute for Secure Information Technology, Germany
 Dr. Min-Hong Yun, ETRI, Korea
 Dr. Seong Joon Lee, Korea Electrotechnology Research Institute, korea
 Dr. Kwihoon Kim, ETRI, Korea
 Dr. Jin Woo HONG, Electronics and Telecommunications Research Inst., Korea
 Dr. Heeseok Choi, KISTI(Korea Institute of Science and Technology Information), korea
 Dr. Somkiat Kitjongthawonkul, Australian Catholic University, St Patrick's Campus, Australia
 Dr. Dae Won Kim, ETRI, Korea
 Dr. Ho-Jin CHOI, KAIST(Univ), Korea
 Dr. Su-Cheng HAW, Multimedia University, Faculty of Information Technology, Malaysia
 Dr. Myoung-Jin Kim, Soongsil University, Korea
 Dr. Gyu Myoung Lee, Institut Mines-Telecom, Telecom SudParis, France
 Dr. Dongkyun Kim, KISTI(Korea Institute of Science and Technology Information), Korea
 Prof. Yoonhee Kim, Sookmyung Women s University, Korea
 Prof. Li-Der Chou, National Central University, Taiwan
 Prof. Young Woong Ko, Hallym University, Korea
 Prof. Dimiter G. Velev, UNWE(University of National and World Economy), Bulgaria
 Dr. Tadasuke Minagawa, Meiji University, Japan
 Prof. Jun-Kyun Choi, KAIST (Univ.), Korea
 Dr. Brownson ObaridoaObele, Hyundai Mobis Multimedia R&D Lab , Korea
 Prof. Anisha Lal, VIT university, India
 Dr. kyeong kang, University of technology sydney, faculty of engineering and IT , Australia
 Prof. Chwen-Yea Lin, Tatung Institute of Commerce and Technology, Taiwan
 Dr. Ting Peng, Chang'an University, China
 Prof. ChaeSoo Kim, Donga University in Korea, Korea
 Prof. kirankumar M. joshi, m.s.uni.of baroda, India
 Dr. Chin-Feng Lin, National Taiwan Ocean University, Taiwan
 Dr. Chang-shin Chung, TTA(Telecommunications Technology Association), Korea

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

 Dr. Che-Sheng Chiu, Chunghwa Telecom Laboratories, Taiwan
 Dr. Chirawat Kotchasarn, RMUTT, Thailand
 Dr. Fateme Khalili, K.N.Toosi. University of Technology, Iran
 Dr. Izzeldin Ibrahim Mohamed Abdelaziz, Universiti Teknologi Malaysia , Malaysia
 Dr. Kamrul Hasan Talukder, Khulna University, Bangladesh
 Prof. HwaSung Kim, Kwangwoon University, Korea
 Prof. Jongsub Moon, CIST, Korea University, Korea
 Prof. Juinn-Horng Deng, Yuan Ze University, Taiwan
 Dr. Yen-Wen Lin, National Taichung University, Taiwan
 Prof. Junhui Zhao, Beijing Jiaotong University, China
 Dr. JaeGwan Kim, SamsungThales co, Korea
 Prof. Davar PISHVA, Ph.D., Asia Pacific University, Japan
 Ms. Hela Mliki, National School of Engineers of Sfax, Tunisia
 Prof. Amirmansour Nabavinejad, Ph.D., Sepahan Institute of Higher Education, Iran

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

Editor Guide

 Introduction for Editor or Reviewer

All the editor group members are to be assigned as a evaluator(editor or reviewer) to submitted journal

papers at the discretion of the Editor-in-Chief. It will be informed by eMail with a Member Login ID and

Password.

Once logined the Website via the Member Login menu in left as a evaluator, you can find out the paper

assigned to you. You can evaluate it there. All the results of the evaluation are supposed to be shown in

the Author Homepage in the real time manner. You can also enter the Author Homepage assigned to

you by the Paper ID and the author's eMail address shown in your Evaluation Webpage. In the Author

Homepage, you can communicate each other efficiently under the peer review policy. Please don't miss

it!

All the editor group members are supposed to be candidates of a part of the editorial board, depending

on their contribution which comes from history of ICACT TACT as an active evaluator. Because the main

contribution comes from sincere paper reviewing role.

 Role of the Editor

The editor's primary responsibilities are to conduct the peer review process, and check the final camera-

ready manuscripts for any technical, grammatical or typographical errors.

As a member of the editorial board of the publication, the editor is responsible for ensuring that the

publication maintains the highest quality while adhering to the publication policies and procedures of

the ICACT TACT(Transactions on the Advanced Communications Technology).

For each paper that the editor-in-chief gets assigned, the Secretariat of ICACT Journal will send the

editor an eMail requesting the review process of the paper.

The editor is responsible to make a decision on an "accept", "reject", or "revision" to the Editor-in-Chief

via the Evaluation Webpage that can be shown in the Author Homepage also.

 Deadlines for Regular Review

Editor-in-Chief will assign a evalaution group(a Editor and 2 reviewers) in a week upon receiving a

completed Journal paper submission. Evaluators are given 2 weeks to review the paper. Editors are

given a week to submit a recommendation to the Editor-in-Chief via the evaluation Webpage, once all or

enough of the reviews have come in. In revision case, authors have a maximum of a month to submit

their revised manuscripts. The deadlines for the regular review process are as follows:

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

Evalution Procedure Deadline

Selection of Evaluation Group 1 week

Review processing 2 weeks

Editor's recommendation 1 week

Final Decision Noticing 1 week

 Making Decisions on Manuscript

Editor will make a decision on the disposition of the manuscript, based on remarks of the reviewers. The

editor's recommendation must be well justified and explained in detail. In cases where the revision is

requested, these should be clearly indicated and explained. The editor must then promptly convey this

decision to the author. The author may contact the editor if instructions regarding amendments to the

manuscript are unclear. All these actions could be done via the evaluation system in this Website. The

guidelines of decisions for publication are as follows:

Decision Description
Accept An accept decision means that an editor is accepting the paper with

no further modifications. The paper will not be seen again by the
editor or by the reviewers.

Reject The manuscript is not suitable for the ICACT TACT publication.

Revision The paper is conditionally accepted with some requirements. A
revision means that the paper should go back to the original
reviewers for a second round of reviews. We strongly discourage
editors from making a decision based on their own review of the
manuscript if a revision had been previously required.

 Role of the Reviewer

Reviewer Webpage:

Once logined the Member Login menu in left, you can find out papers assigned to you. You can also

login the Author Homepage assigned to you with the paper ID and author's eMail address. In there you

can communicate each other via a Communication Channel Box.

Quick Review Required:

You are given 2 weeks for the first round of review and 1 week for the second round of review. You must

agree that time is so important for the rapidly changing IT technologies and applications trend. Please

respect the deadline. Authors undoubtedly appreciate your quick review.

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

Anonymity:

Do not identify yourself or your organization within the review text.

Review:

Reviewer will perform the paper review based on the main criteria provided below. Please provide

detailed public comments for each criterion, also available to the author.

 How this manuscript advances this field of research and/or contributes something new to the
literature?

 Relevance of this manuscript to the readers of TACT?
 Is the manuscript technically sound?
 Is the paper clearly written and well organized?
 Are all figures and tables appropriately provided and are their resolution good quality?
 Does the introduction state the objectives of the manuscript encouraging the reader to read on?
 Are the references relevant and complete?

Supply missing references:

Please supply any information that you think will be useful to the author in revision for enhancing

quality of the paperor for convincing him/her of the mistakes.

Review Comments:

If you find any already known results related to the manuscript, please give references to earlier papers

which contain these or similar results. If the reasoning is incorrect or ambiguous, please indicate

specifically where and why. If you would like to suggest that the paper be rewritten, give specific

suggestions regarding which parts of the paper should be deleted, added or modified, and please

indicate how.

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

Journal Procedure

Dear Author,

 You can see all your paper information & progress.

 Step 1. Journal Full Paper Submission

 Using the Submit button, submit your journal paper through ICACT Website, then you will get new

paper ID of your journal, and send your journal Paper ID to the Secretariat@icact.org for the review and

editorial processing. Once you got your Journal paper ID, never submit again! Journal Paper/CRF

Template

 Step 2. Full Paper Review

 Using the evaluation system in the ICACT Website, the editor, reviewer and author can communicate

each other for the good quality publication. It may take about 1 month.

 Step 3. Acceptance Notification

 It officially informs acceptance, revision, or reject of submitted full paper after the full paper review

process.

Status Action
Acceptance Go to next Step.

Revision Re-submit Full Paper within 1 month after Revision Notification.

Reject Drop everything.

 Step 4. Payment Registration

 So far it's free of charge in case of the journal promotion paper from the registered ICACT conference

paper! But you have to regist it, because you need your Journal Paper Registration ID for submission of

the final CRF manuscripts in the next step's process. Once you get your Registration ID, send it to

Secretariat@icact.org for further process.

 Step 5. Camera Ready Form (CRF) Manuscripts Submission

 After you have received the confirmation notice from secretariat of ICACT, and then you are allowed to

submit the final CRF manuscripts in PDF file form, the full paper and the Copyright Transfer Agreement.

Journal Paper Template, Copyright Form Template, BioAbstract Template,

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

Journal Submission Guide

All the Out-Standing ICACT conference papers have been invited to this "ICACT Transactions on the

Advanced Communications Technology" Journal, and also welcome all the authors whose conference

paper has been accepted by the ICACT Technical Program Committee, if you could extend new contents

at least 30% more than pure content of your conference paper. Journal paper must be followed to

ensure full compliance with the IEEE Journal Template Form attached on this page.

 How to submit your Journal paper and check the progress?

Step 1. Submit Using the Submit button, submit your journal paper through ICACT
Website, then you will get new paper ID of your journal, and send your
journal Paper ID to the Secretariat@icact.org for the review and editorial
processing. Once you got your Journal paper ID, never submit again! Using
the Update button, you can change any information of journal paper
related or upload new full journal paper.

Step 2. Confirm Secretariat is supposed to confirm all the necessary conditions of your
journal paper to make it ready to review. In case of promotion from the
conference paper to Journal paper, send us all the .DOC(or Latex) files of
your ICACT conference paper and journal paper to evaluate the difference
of the pure contents in between at least 30% more to avoid the self
replication violation under scrutiny. The pure content does not include any
reference list, acknowledgement, Appendix and author biography
information.

Step 3. Review Upon completing the confirmation, it gets started the review process thru
the Editor & Reviewer Guideline. Whenever you visit the Author
Homepage, you can check the progress status of your paper there from
start to end like this, " Confirm OK! -> Gets started the review process -
> ...", in the Review Status column. Please don't miss it!

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

5J

1081

1091

Volume. 7 Issue. 1

1 An Improvement of a Checkpoint-based Distributed Testing Technique on a Big Data

Environment

Bhuridech Sudsee, Chanwit Kaewkasi

School of Computer Engineering, Suranaree University of Technology, Nakhon Ratchasrima, Thailand

2 Improving K Nearest Neighbor into String Vector Version for Text Categorization

Taeho Jo

School of Game, Hongik University, 2639 Sejongro Sejong South Korea

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

1
Abstract— The advancement of storage technologies and

the fast-growing number of generated data have made the
world moved into the Big Data era. In this past, we had many
data mining tools but they are inadequate to process
Data-Intensive Scalable Computing workloads. The Apache
Spark framework is a popular tool designed for Big Data
processing. It leverages in-memory processing techniques that
make Spark up to 100 times faster than Hadoop. Testing this
kind of Big Data program is time consuming. Unfortunately,
developers lack a proper testing framework, which cloud help
assure quality of their data-intensive processing programs
while saving development time and storage usages.

We propose Distributed Test Checkpointing (DTC) for
Apache Spark. DTC applies unit testing to the Big Data
software development life cycle and reduce time spent for
each testing loop with checkpoint. By using checkpoint
technique, DTC keeps quality of Big Data processing software
while keeps an inexpensive testing cost by overriding original
Spark mechanism so that developers no pain to learn how to
use DTC. Moreover, DTC has no addition abstraction layers.
Developers can upgrade to a new version of Spark seamlessly.
From the experimental results, we found that in the
subsequence rounds of unit testing, DTC dramatically speed
the testing time up to 450-500% faster. In case of storage,
DTC can cut unnecessary data off and make the storage 19.7
times saver than the original checkpoint of Spark. DTC can be
used either in case of JVM termination or testing with random
values.

Keyword— Distributed Checkpointing; Apache Spark; Big Data
Testing; Software Testing;

I. INTRODUCTION
HE increasing and diversity of electronic devices,
sensors, IoT devices and the fast-growing numbers of

Internet users have been generating tremendous amount of
data recently. They are not only the large amount of data

———————————————————————
Manuscript received December 27th, 2017. This work was supported by

Suranaree University of Technology, and a follow-up of the invited journal
to the accepted & presented paper of the 20th International Conference on
Advanced Communication Technology (ICACT2018),

Bhuridech Sudsee is with School of Computer Engineering, Suranaree
University of Technology, Nakhon Ratchasrima, Thailand (corresponding
author phone: +66-44-22-4422; e-mail: m5741861@g.sut.ac.th).

Chanwit Kaewkasi is with School of Computer Engineering, Suranaree
University of Technology, Nakhon Ratchasrima, Thailand (e-mail:
chanwit@sut.ac.th).

but their structures are also complex as well. This
complexity makes the traditional data mining tools
inadequate to manage today’s data [1].

The MapReduce [2] programming model has induced the
development of many frameworks such as Apache Hadoop
[4], Map-reduce-merge [5] and Apache Spark [6], which
aim to process data intensive tasks. Developers only need to
rewrite their programming logic in the form of map and
reduce functions in order to process data on a MapReduce
framework. These functions will be automatically managed
by the framework’s default configuration. This mechanism
makes the MapReduce framework easy to use. At its
simplest form, a MapReduce program usually starts by a
map function creating key/value pairs from the input. These
intermediate key/value pairs are then passed to a reduce
function to produce the final results. The MapReduce
model is parallel by nature. It is designed to allow
developers to run MapReduce programs for high
performance computing jobs using a commodity cluster,
built from low-cost hardwares. With this kind of the cluster
architecture, we can handle massive amount of data and
process them on numerous cluster nodes without a single
point of failure [3].

Although the MapReduce model is easy to use for
software development, but it is quite tricky to test software
written by the MapReduce model. Software testing is a vital
part of the development process. Testing is usually 25-50%
of the overall cost [8]. We found that the current
mechanism is not enough to assure quality for Big Data
processing programs. Unit testing is a software testing
technique which properly leads to better levels of quality.
However, tools like Scalatest[9] or jUnit[10] have their own
limitations to use with a MapReduce framework like Spark.
For example, SparkContext and SparkSession objects must
be instantiated only once for each running Java Virtual
Machine (JVM) to avoid unexpected testing results [12].
Spark-testing-base [11] also does not have a testing
mechanism for Spark. Without modification, it cannot work
on a Spark cluster because if its inability to distribute class
files across worker nodes. There aforementioned techniques
are not suitable for Spark simply because they are not
designed to test programs that distributelly process large
amount of data.

Test-driven development (TDD) is a software
development technique that helps developers to focus on

An Improvement of a Checkpoint-based
Distributed Testing Technique

on a Big Data Environment
Bhuridech Sudsee, Chanwit Kaewkasi

School of Computer Engineering

Suranaree University of Technology, Nakhon Ratchasrima, Thailand, 30000

m5741861@g.sut.ac.th, chanwit@sut.ac.th

T

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1081

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

writing a specific test at a time. It additionally allows code
improvement while preserving correctness according to the
specification. TDD workflow consists of the following
steps, (1) writing a minimum test (2) writing codes to just
make the test passed, and (3) refactoring to remove
unnecessary codes while still making the current test passed
[13]. We call these steps a TDD workflow herein this paper.
Applying TDD to data intensive programs is difficult due to
the nature of workloads, which need to process on a cluster.
So, developers require a special tool to help shorten each
loop of the TDD workflow.

Spark has cache, persist and checkpoint methods to help
mitigate job failure. These mechanisms however do not
help software testing process much. The main reason is that
a cluster state cached or persisted by them does not survive
across runs of JVMs. A cluster state saved by the
checkpoint method does survive on disk but unfortunately it
cannot be retrieved back by a newly started JVM [14, 15].

In this paper, we present Distributed Test Checkpointing
(DTC), a technique that leverages the checkpoint technique
to enhance software testing for data intensive jobs. With
DTC, developers can increase productivity when testing
their software on a distributed cluster repeatedly. DTC
applied a hash function on each data partition of a Resilient
Distributed Datasets (RDD) [18] to use an identifier.
Modification of an RDD or a Dataset can be traced by the
hashed number. The testcase that uses the RDD is also
hashed at the bytecode level. Combining these techniques,
DTC is found to reduce testing time and storage required by
checkpointing significantly compared to the original
Spark’s checkpointing technique.

The remaining of this paper is organized as followed.
Section II discusses related works, including Apache Spark.
Section III presents the design and internal mechanism of
DTC. Section IV presents the system architecture of the
cluster used by our experiments, and the experimental
results. This paper then ends with conclusion and future
works in Section V.

II. BACKGROUND AND RELATED WORK

A. Apache Spark
Spark is a data intensive processing framework focusing

on in-memory data processing [6], which is implemented in
the form of Resilient Distributed Dataset (RDD) [18]. RDD
is designed to take care of the data flow and handle the
processing mechanism. An RDD could be created using one
of the following methods (1) reading data from file (2)
parallelizing collection in the driver program (3)
transforming from another RDD (4) and by transforming
back from a persisted RDD [6]. An RDD comprises with
two kinds of command, transformations and actions. A
transformation command transforms an RDD to another
RDD. These commands are map, filter and groupByKey, for
example. Another set of commands are actions, which are
collect and count, for example. An RDD keeps all previous
transformation inside itself. This direct acyclic graph of
transformation is known as lineage. The beginning of the
real computation occurs only when an action is called. This
is the lazy evaluation nature of Spark.

A mechanism for failure recovery that helps an RDD to
resume the processing without re-computation from scratch
are methods such as cache, persist and checkpoint. The
cache method uses persistency at MEMORY_ONLY, while
the persist method has several levels of persistency. The
checkpoint method, in contrast, uses the technique which
save data onto a reliable storage, such as HDFS, Amazon
S3 or Ceph. An RDD is usually cached or persisted during
its computation to avoid re-computation previous steps
[15].

The checkpoint technique is also applicable for Spark
Streaming because it truncates the internal lineage, so the
RDD does not need to knowledge of its parent. However,
this mechanism is not designed for software testing. The
re-computation is still required to start from the beginning
when the testcase is re-run. The rerunning of the testcase
destroys a Block Manager inside an Executor. This Block
Manage is responsible for keeping cached and persisted
data. The new Driver program and the testcase therefore is
not able to access the location of checkpoints.

In addition, Spark has introduced the Dataframe API in
1.3 and Dataset in 1.6. Both abstractions can be used
interchangeably because Dataset[Row] is the type safer
version of DataFrame. A dataset is also convertible to an
RDD. In the case of DTC proposed in this paper, we read
and write data directly without triggering any computation
of related RDDs.

B. Debugging framework for Spark
A technique used to improve quality of the software is

debugging. Developers usually debug to observe certain set
of variables they are interested. However, in the
Data-intensive Scalable Computing (DISC), the debugging
process is difficult as data are computed distributedly on a
cluster.

BigDebug [7] is a tool designed to helps Spark’s
developers deal with debugging a Big Data program. There
is a downside that the tool requires user’s interaction during
the debugging process. Those interactions make the
debugging more difficult than those of normal programs
because the Big Data programs are distributed by nature.
Moreover, a BigDebug program cannot tackle the problem
when the RDD being debug requires changes. The whole
debugging process needs to start over in that case. In case of
the developer changing codes on-the-fly, the RDD will
become in-consistent as some partitions of the RDD has
been processed by the old version of codes, while other
partitions will be processed by the new codes. BigDebug
support Spark up to 1.2.1 as the time writing.

C. Checkpoint implementation for Spark
Researchers have been employed the checkpoint of Spark

in many ways to improve its efficiency, as follows.
Flint [26] was created atop the original checkpoint

technique of Spark. It aims at applying checkpoint and store
their data on transient instances to reduce the VM usage
cost. A transient instance in a kind of low-cost computing
unit, which can be recalled anytime by its cloud provider.
Flint solves this problem by writing an RDD’s partitions to
an HDFS, which is operated on on-demand instances. We
found that this implementation lacks a mechanism to
prevent re-calculation when JVM is terminated. In addition,

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1082

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

their checkpoint will be saved automatically so developers
need to prepare a huge amount of space in order to prevent
the full of storage, which can lead to the failure of the
whole system.

TR-Spark [27] implements the similar approach as Flint.
The difference is that TR-Spark allows fined-granularity
checkpoints at task-level. By leveraging this level of
checkpoints, the storage usage cloud be reduced in
comparison to checkpoint the whole RDD. However,
TR-Spark makes it difficult to use as developers need to
collect the information of VM failure to let it know the
failure probability. TR-Spark does not deal with changes of
the Driver program.

Automatic Spark Checkpointing (ASC) [25] was designed
to help analyze the trade-off between RDD checkpointing
and its restore. ASC performs this computation by
estimating them from an RDD lineage. Nevertheless, this
technique does not support checkpoint across JVM
termination. It also lacks the ability to recognize the
similarity or identity of an RDD.

Spark-flow [24] aims to mitigate the effect of JVM
termination for checkpoint restoration. It makes use of
Distributed Collection (DC), a library similar to the Dataset
API. DC is able to analyze an RDD at the bytecode level
with ASM. It can identify the location of checkpoint calls,
inside an anonymous function. It also uses the MD5 hash
function to help detect changes at the bytecode level.
However, DC has some downside as the following. First,
when calling checkpoint on a DC, the data is re-read again
after checkpointing. Second, when restoring from
checkpoint, the action count will be triggered, so the
re-computation kicks in. Finally, computation is mainly
done on the Driver machine, so the mechanism is actually
not distributed. This often causes Out-of-Memory exception
inside the Driver program and it stops working.

III. DESIGN AND IMPLEMENTATION
Spark stores the RDD transformations in the form of a

lineage graph a.k.a. the logical execution plan. When an
action is triggered for a certain RDD, its job will be
submitted to the DAG Scheduler to transform the RDD’s
lineage into a directed acyclic graph, whose a vertex is an

RDD partition and edge is a transformation. After that the
staging process will be kicked in. This staging process will
be started from the final action going backwards to the
beginning of the RDD. However, in the real execution, the
process will be performed from the beginning of the RDD
forwardly to the final action. After the staging, the system
obtains a set of Stages and Tasks.

A checkpoint of an RDD however must be done before
the first action is performed. From the source code in the
Fig. 1, when a program starts to process an array of integer
1 to 5, the array will be passed as a parameter of method
parallelize of class SparkContext. This result in a
ParallelCollectionRDD stored in variable data. At line 2,
each element from the data RDD is mapped with 1 using
the map method as a key/value pair. The result is a
MapPartitionsRDD stored in variable distData. At line 3,
method dtCheckpoint is invoked. Please note that the
original Spark and DTC both use the lazy evaluation
mechanism, this means that the checkpoint method only
marks at a certain point over the DAG, where checkpoints
will happen there. At line 4, command distData.count() is
the first action. When this first action is triggered, the
checkpoint is not yet created. The computation then is
started from the beginning of the RDD to the mark point.
After that, the checkpoint is stored at the first upper
directory level as a hash value generated by the mechanism
of DTC. At the line no 5, method distData.collect() is
invoked as the second action. The system will then check
backwards from the action to the beginning of the RDD.
This time the system will find a checkpoint already existed
because there is a directory whose name matches with the
hash. When the DAG Scheduler starts to transform the
lineage, it uses the data directly from the checkpoint
without re-computation. Please also note that action count()
and collect() belong to the different jobs. The result
computed by count() will not be included as an input for
collect(), despite their order of execution.

In Scala, it allows us to implement a new feature for a
class by creating an Implicit Class then mixes it in to the
existing classes, like RDD or Dataset. The DTC
mechanisms proposed in this paper are implemented using
that technique. With DTC as an Implicit Class, developers
could still use all existing properties and behavior of an
RDD, while having an additional method from DTC.
Developers are also able to upgrade the Spark framework to
the newer versions without rewriting this mechanism. DTC
is more suitable for testing than Spark-flow, which has
many abstraction layers. These abstraction makes it
difficult to enhance capability of Spark-flow.

A. DtCheckpointing
This mechanism works when the method dtCheckpoint of

an RDD or a DataSet is called. This call marks an RDD and
also starts the Hashing RDD mechanism to obtain a
directory path from hash transformation. If there is no
directory matched the hash value, it means that the system
never created that checkpoint. After the creation of the
directory content of the RDD will be stored inside of it. But
if the directory exists, the system will read the content as
the data of the RDD. In Fig. 2, when an RDD is created
using the parallelize method and is transformed with map
followed by an invocation of dtCheckpoint. The sub-system

1 val data = sc.parallelize(Array(1,2,3,4,5))
2 val distData = data.map(x => (x,1))
3 distData.dtCheckpoint()
4 distData.count()
5 distData.collect()

Fig. 1. Example of a dtCheckpoint call on an RDD

Fig. 2. The dtCheckpointing mechanism inside DTC

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1083

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

DtCheckpointing kicks in to mark points in the RDD for
later storing when action count is called.

We usually perform the test on a Spark Cluster with SBT,
which is an interactive build tool to help develop software
with Java or Scala. SBT allows us to write a build file using
Scala-based Domain Specific Language. It manages a
program dependency with Apache Ivy. With DTC, we
modify test commands of the SBT namely test, test-only,
and test-quick to support not only the local execution but
also in the real working cluster. We solve the problem of
ClassNotFoundException and NoClassDefFoundError by
making a fat jar via custom SBT task. So, we introduce
testOnCluster for testing every testcase, testOnlyOnCluster
to test a specific testcase, and testQuickOnCluster to test a
certain testcase which may be failed from last time, or never
tested or need re-computation. Our modification to SBT
allows the new mode of testing on the real cluster.

B. Hashing an RDD
Hash function is a one-way function which can be used to

check data modification. Eve one bit of data is changed this
function notices that modification. In this paper, we will
compare MD5, SHA-1 and SHA-256 because these
algorithms have various speed of hash and resource usage.

This technique of the DTC framework is able to track the
change of an RDD because the generated transformations.
So we can use this mechanism to detect modification of any
transformation back to the original RDD. When an action is
triggered, the DTC framework detects all RDD
dependencies and prepares a clean bytecode available by
the CleanF property of the RDD, following by preparing
other Java bytecode’s files which related to the
dependencies. In preparation stage, DTC uses ASM, a tool
to manage a Java bytecode [17], which Scala internally uses
it for the compilation mechanism. With a ASM, the DTC’s
hashing an RDD mechanism can access Java class file at
runtime and de-serialize them for reverse engineering
propose. DTC needs to remove some brittle information
such as LINENUMBER or serialVersionUID from a class
file. With this information filtered out, we can detect
changes of an RDD or DataSet even when the line numbers
have been changed.

The result of class file analysis in preparation stage, after
unnecessary dependencies was eliminated, these
dependencies will compute hash number and input data,
which the origin of an RDD will compute hash number also.
The computation is distributed computing with Spark’s
accumulator in the first level hash number computation will

compute hash number of input data for every partition, and
then collect and reorder result because unpredictable
computation time. After that, the DTC will compute hash
number of sorted hash number again. Fig. 3, illustrates the
steps of hashing mechanism please note that the
computation of input data is an option that can specify with
dtCheckpoint(true).

IV. EXPERIMENTS

A. Cluster configuration
The experiments presented in this paper have been

conducted on a Spark cluster consisted of 10 nodes. Each
node is an Intel Core i5-4570 Quad-core with 4 GB of
RAM. The drive node is an Intel Xeon E5-2650V3
Deca-core with 8GB of RAM. We use Apache Spark 2.0 for
the experiments along with Ceph as the distributed file
system over these 10 nodes. The Ceph storage is 10 TB.
The system architecture is illustrated in Fig. 4.

B. Methodology
For the experiments, we use a MapReduce program

Wordcount on 31 GB data dump of Wikipedia, Triangle
Counting with Google Web Graph [28], PageRank with
Google Web Graph and the last one is Pi Estimation with
one billion times. Each program with its input dataset is
shown in Table I. The Wordcount Program splits sentences
into array of words and counts them using both RDD and
Dataset (or DC in case of Spark-flow) with different
checkpoint mechanisms. We tested each checkpoint
mechanism 10 times continuously and measured both in
space and time perspectives. Moreover, we tested 5
additional with JVM termination. Then we started the JVM
again to test the recovery process of checkpoints.

 Table II shows the comparison of checkpoint mechanism
properties. If we do not use checkpoint, the system does not
have the fault tolerance property. If we use the original
Spark, it is not suitable for testing because its checkpoint
mechanism does not work well in the test environment. In
case of Spark-flow it does not work on the cluster
environment out-of-the-box. DTC, on the other hand, is
designed to address these problems in the testing

SET hash_array = empty array of string

IF (HASH_INPUT_DATA = true) THEN

 READ each data partition from (RDD or DataSet)

 COMPUTE hash of each data partition

 APPEND hashes to hash_array

ENDIF

Fig. 3. Pseudo codes of the mechanism of Hashing an RDD

Fig. 4. The cluster architecture used by the experiments

TABLE I
COMPUTATION PROGRAMS AND INPUT DATA OF EXPERIMENTAL

Program Input dataset
Wordcount 31 GB of Wikipedia
Triangle Counting 875,713 vertices and 5,105,039 edges
PageRank 875,713 vertices and 5,105,039 edges
Pi Estimation 109 times

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1084

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

environment. So, DTC provides the better environment to
support unit testing.

Table II shows a brief differentiation of comparison
method that we will experiment. That meant, if we have no
checkpoint it will lack failure tolerance, the Spark original
checkpoint insufficient to testing. The Spark-flow push
developer in more abstraction layer by create a higher level
of a DataSet and it not work on cluster naturally. In Table
III, we show the combination of all experimental
configurations. Accordingly, the DTC introduce to rectify
that plain.

We compared with MapReduce Wordcount algorithms
on Wikipedia 31 GB with separating each word from each
other with white space. And then, we filtered only word
occurred more than 10 million times, after that asserted
with the most word occurred. We consecutively repeated
these steps 10 cases and performed testing on 5 cases then
stopped the JVM. After that we re-run these 5 cases again
on both RDD and DataSet.

Next, we compared with Triangle Counting Program
which gathers the number of vertices whose has two
adjacent vertices with an edge between them. And then
perform PageRank Program to ranks members onto the
graph. Input of these programs came from Google Web
Graph. with 875,713 vertices and 5,105,039 edges, testing
on 5 cases then stop the JVM, after that re-run these 5 cases
again on RDD.

Finally, we compared the Pi Estimation program by using
Monte Carlo algorithm shows in (1) [29].

 (1)

The algorithm randomly generated two values which
represent to coordinate x and y of unit circle (so both x and
y are between -1 to 1). After that, trying to addition
between square magnitude of x and square magnitude of y
and if that result less than or equal to 1 will be count as fall
in the unit circle. That number will use to represent π/4, so

that we can multiply by 4 to roughly results Pi number. We
tested 5 cases then stop the JVM, after that we re-run these
5 cases again on RDD.

C. Experimental results (consecutively 10 cases)
From the experiments, we start discussing in the case of

no hashing input data, denoted not-hashinput by running
consecutively 10 cases. In this case the input will not be
verified by hashing functions before the program starts. We
assume that development and during the tests. The
experimental results are show in Fig. 5. At the first run,
DTC and the original-checkpoint mechanism are
all slow with insignificant difference. The
DTC-Java-SHA1 is slowest. It uses 636 seconds slightly

different from original-checkpoint. The
no-checkpoint configuration does not have this startup
overhead, so it run at 136 seconds on average. For the first
run, All DTC and the original-checkpoint are 4.7
times or slower than the no-checkpoint mechanism.
However, all DTC configurations are significantly faster in
the subsequence runs.

Fig. 6 shows the comparison between cases of applying
hash functions over input data to allow the system to detect

= 	
∬ 1 %& %'{)*+,*-.}

∬ 1%& %'{0.-),,-.}

= 	π4

ℙ	($%&'	()*ℎ),	-)%-./) =	2%/3	&4	*ℎ/	5,)*	-)%-./2%/3	&4	*ℎ/	6753%/

TABLE IV
CHECKPOINT’S STORAGE USAGE OF AN RDD

Storage usage Size Unit
No-checkpoint 0 MB
Spark original checkpoint 9.870 MB
DTC-Java-with-hash 0.987 MB
DTC-Java-without-hash 0.987 MB
DTC-Kryo-with-hash 0.501 MB
DTC-Kryo-without-hash 0.501 MB

TABLE V

CHECKPOINT’S STORAGE USAGE OF DATASET
Storage usage Size Unit

No-checkpoint 0 MB
Spark original checkpoint 9.860 MB
DTC-Avro-with-hash 0.987 MB
DTC-Avro-without-hash 0.987 MB
DTC-Parquet-with-hash 0.993 MB
DTC-Parquet-without-hash 0.993 MB
Spark-flow 9.930 MB

TABLE II
FEATURE COMPARISON BETWEEN CONFIGURATIONS

Method Failure
tolerance

More abstraction
layer

Prevent re-calculation
from beginning

Suitable for
Testing Cluster

No-Checkpoint No No No No Yes
Spark Original Yes No Yes Not Suitable Yes
Spark-flow Yes Yes Yes Yes No
DTC Yes No Yes Yes Yes

TABLE III
THE COMBINATION OF ALL EXPERIMENTAL CONFIGURATIONS

Configuration
Type Checkpoint Data Format Hash Algorithm

RDD DataSet DC Java Kryo Avro Parquet MD5 SHA1 SHA256
No-checkpoint √ √ - - - - - - - -
Spark Original √ √ - √ - - - - - -
Spark-flow - - √ - - - √ √ - -
DTC √ √ - √ √ √ √ √ √ √

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1085

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

changes of the input. It shows that DTC mechanisms are
slower than no-checkpoint and
original-checkpoint only in the first run. In the
subsequence runs, DTC mechanisms make the test s faster
than those run by no-checkpoint and
original-checkpoint. We found that
DTC-Kryo-SHA1 is slowest in the first run. It uses 908
seconds on average, while no-checkpoint uses 136
seconds and original-checkpoint use 636 seconds.
In the subsequence runs, DTC mechanism uses around 85
seconds on average. It is significantly faster that both
no-checkpoint and original-checkpoint, which
is 60%

In the first run with hash input, the fastest DTC
mechanism is DTC-Java-SHA256 it is 480% slower than
no-checkpoint and 24% slower than
original-checkpoint. In the subsequence runs, this
mechanism is 40% faster than no-checkpoint and
590% faster than original-checkpoint. Other cases
are in similar trends.

In case of DataSet, we found the similar trends as the
case of RDD. During the first run DTC mechanisms are
slowest, and significantly faster in subsequence runs. Fig. 7
and Fig. 8 show the comparison between checkpoint
mechanisms for the DataSet without hashing input and with
hashing input, respectively. We also include Spark-flow
in these experiments. We found that Spark-flow uses
752 seconds at the first run, while DTC-Parquet-MD5

uses 606 seconds, so DTC is 24% faster than
Spark-flow. In case of hash input data, DTC is 40%
slower than Spark-flow for the first run. However, in the
subsequence runs, DTC dramatically reduces time
spending, according aforementioned trends.

The mechanism of checkpoint usually requires use of
storage. The storage usage comparison is then presented in
Table IV. According to the table, DTC with Java serializer
uses the storage only one-tenth of those used by the original
Spark checkpoint. In case of DTC with Kryo, it uses storage
only 5% of the original-checkpoint.

This storage usages are similar for DataSet. According to
Table IV, DTC with Avro format uses only 10% of the
original storage. In case of DTC with Parquet format, it uses
only 11% of the original storage. Comparison of these
results with Spark-flow, we are roughly at the same
ration.

DTC is designed to allow re-usability of RDDs and
DataSets. It can traverse and detect change of the
dependency of each RDD or a DataSet. From the
experiments, we have found that DTC has a larger overhead
than the mechanism of the Original Spark only when a
testcases are in first run. When the testcases are in the later
runs, DTC makes them 5-6 times faster than running by the
Original Spark and Spark-flow. Moreover, DTC uses
disk space 8-9 times less than both implementations as
shown in Table IV and Table V.

Fig. 7. Comparison of checkpoint time of DataSet,including Spark-flow without
hashing inputs using the Wordcount program (10 cases consecutively).

Fig. 8. Comparison of checkpoint time of DataSet,including Spark-flow with
hashing inputs using the Wordcount program (10 cases consecutively).

Fig. 5. Comparison of checkpoint time of RDDs without hashing inputs using the
Wordcount program. (10 cases consecutively)

Fig. 6. Comparison of checkpoint time of RDDs with hashing inputs using the
Wordcount program. (10 cases consecutively)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1086

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

D. Experimental results (5 cases with JVM termination)
In this section, we discuss the experimental results in

case of running 5 cases consecutively, then stopping the
JVM, after that the experimental cases were re-run again.
Its behavior on different frameworks were observed.

Firstly, we discuss the result of the Wordcount program
on RDD. We found that DTC-Java-SHA256 used 542
seconds at the first run in case of running if before stopping
JVM, so DTC is 9% faster than original-checkpoint
which uses 596 seconds. After stopping JVM or closing the
program then re-running the test cases, DTC with all
settings used only few seconds to recover checkpoint, while
other frameworks used hundreds of second, as showed in
Fig 9. In Fig 9, the dashed line is the first running before
JVM terminating and the solid line is the second running
after restarting the JVM.

In the case of DataSet shown you in Fig 10, the dashed
line presents the first run of 5 cases. We found that the
original-checkpoint used 654 seconds, while
Spark-flow used 585 seconds. So, Spark-flow is 11%
faster than the original one. But DTC with the
DTC-Parquet-MD5 configuration, it used 595 seconds,
9% faster than original-checkpoint. However, in
the second run of 5 cases after restarting the JVM, as the
solid line, the results show that the
original-checkpoint used 697 seconds and
Spark-flow used 545 seconds, while DTC with any
configuration used just few seconds.

Fig. 11 shows the results comparing between frameworks
using Triange Counting Program, In the case of not
applying hashing to the input data, we showed that in Fig 11
(a), no-checkpoint, original-checkpoint and
DTC used almost the same amount of time for the first runs.

(a) (b)

Fig. 9. Comparison of checkpoint time of RDDs using the Wordcount program (5 cases with JVM termination)
while (a) without hashing inputs and (b) with hashing inputs.

(a) (b)

Fig. 10. Comparison of checkpoint time of DataSet using the Wordcount program (5 cases with JVM termination)
while (a) without hashing inputs and (b) with hashing inputs.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1087

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

For the second runs after restarting the JVM, we found the
same trend as we were discussing earlier. DTC with all
configurations could reduce time for testing to just a few
seconds. Due to inputs were in the form of graph (vertices
and edges) as shown in Fig 11 (b), the underlying
mechanism of the Spark Framework tries to perform
operations efficiently by casting the partition of the input to
class ShippableVertexPartition. In the research work
reported in this paper, DTC does not import to support to
read this kind of data type. Fig 11 (b) shows that DTC with
all configurations could not help reduce time much. All
frameworks use the same amount of time processing the
data.

In Fig 12 shows the experimental results obtained from
running the PageRank program. PageRank is a program that

processes graphs. It used the same set of inputs as the
previous experimental, Triangle Counting. In Fig 12 (a), it
shows the results in the case of not applying hashing to the
input data. We found that in the first testcase of the first
run, the results of DTC with Java serialization, with either
MD5 or SHA1 as the hash function, used 204 seconds,
while the original-checkpoint used 214 seconds. In
this comparison, DTC could speed up by 4%. For the rest of
testcases, times spent by DTC is cut down to just a few
seconds. In Fig 12 (b), we also found the same problem as
of the Triangle Counting program. This was the result of
hashing input.

Finally, we discuss the results of the Pi Estimation
program. In Fig. 13, we showed tenor of comparing
frameworks. For the first testcase of the first run, we found

Fig. 11. Comparison of checkpoint time of RDDs using the Triangle Counting program (5 cases with JVM termination)
while (a) without hashing inputs and (b) with hashing inputs.

 (a)

 (b)

Fig. 12. Comparison of checkpoint time of RDDs using PageRank Program (5 cases with JVM termination)
while (a) without hashing inputs and (b) with hashing inputs.

 (a)

 (b)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1088

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

that without hashing inputs, the DTC-Kryo-SHA256 used
114 seconds, while the original-checkpoint used
135 seconds as shown in Fig 13 (a) DTC was 18% faster in
this case. In the consequent testcases, DTC could cut the
running time significantly.

In case of hashing inputs, we found the same trend as
shown in Fig 13 (b) as the previous results. DTC used
processing time almost the same as
original-checkpoint at the first testcase then
dramatically speed up by using only a few seconds for
testing each testcase. Moreover, the DTC framework can be
detected in case of random values, so that spark developers
can reproduce the input which causes software is issues.

V. CONCLUSIONS AND FUTURE WORK
The experimental results have obviously shown that DTC

is suitable for improving productivity for unit testing in Big
Data applications in terms of time consumption and storage
usage. We can perform testing for Big Data either on a local
or a cluster. DTC could trace change in testcases with
random values. Unfortunately, we found that DTC could
work well in case of graph algorithms such as Triangle
Counting or PageRank due to spark framework cast
partition of an input to ShippableVertexPartition. So that
one of limitation the DTC is input datatype. We are
researching in potential mechanisms which can be used for
increasing speed of testing and reducing storage usages
such as cache and persist. The JVM configurations are ones
of tuning parameter we are focusing. These subjects are
being studied.

REFERENCES
[1] W. Fan and A. Bifet, “Mining big data: current status, and forecast to

the future,” in ACM SIGKDD Explorations Newsletter, 2012, vol. 14,
pp. 1–5.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM - 50th anniversary
issue: 1958 - 2008, vol. 51, no. 1, pp. 107–113, 2008.

[3] B. Mark and B. Rajkumar, “Cluster Computing: The Commodity
Supercomputer,” in Software-Practice and Experience, 1999, vol.
29(6), pp. 551–576.

[4] “Welcome to ApacheTM Hadoop®!” [Online]. Available:
https://hadoop.apache.org/. [Accessed: 06-May-2017].

[5] H. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker,
“Map-reduce-merge: Simplified Relational Data Processing on Large
Clusters,” in Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, New York, NY, USA, 2007, pp.
1029–1040.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
second USENIX Conference on Hot Topics in Cloud Computing, 2010,
pp. 10–10.

[7] M. A. Gulzar, M. Interlandi, T. Condie, and M. Kim, “BigDebug:
Interactive Debugger for Big Data Analytics in Apache Spark,” in
Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, New York, NY,
USA, 2016, pp. 1033–1

[8] A. Spillner, T. Linz, and H. Schaefer, Software testing foundations: a
study guide for the certified tester exam. Rocky Nook, Inc., 2014.

[9] “ScalaTest.” [Online]. Available: http://www.scalatest.org/.
[Accessed: 06-May-2017].

[10] “JUnit 5.” [Online]. Available: http://junit.org/junit5/. [Accessed:
06-May-2017].

[11] “holdenk/spark-testing-base,” GitHub. [Online]. Available:
https://github.com/holdenk/spark-testing-base. [Accessed:
06-May-2017].

[12] “[SPARK-2243] Support multiple SparkContexts in the same JVM -
ASF JIRA.” [Online]. Available:
https://issues.apache.org/jira/browse/SPARK-2243. [Accessed:
06-May-2017].

[13] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[14] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning spark:
lightning-fast big data analysis. O’Reilly Media, Inc., 2015.

[15] “JerryLead/SparkInternals,” GitHub. [Online]. Available:
https://github.com/JerryLead/SparkInternals. [Accessed:
07-May-2017].

Fig. 13. Comparison of checkpoint time of RDDs using Pi Estimation Program (5 cases with JVM termination)
while (a) without hashing inputs and (b) with hashing inputs.

 (a)

 (b)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1089

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

[16] H. Karau and R. Warren, High Performance Spark: Best Practices for
Scaling and Optimizing Apache Spark. O’Reilly Media, Incorporated,
2017.

[17] E. Kuleshov, “Using the ASM framework to implement common Java
bytecode transformation patterns,” Aspect-Oriented Software
Development, 2007.

[18] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proceedings of the
9th USENIX conference on Networked Systems Design and
Implementation, 2012, pp. 2–2.

[19] “A Universally Unique IDentifier (UUID) URN Namespace,” A
Universally Unique IDentifier (UUID) URN Namespace. [Online].
Available: https://www.ietf.org/rfc/rfc4122.txt. [Accessed:
07-May-2017].

[20] S. Saxena, Getting Started with SBT for Scala. Packt Publishing, 2013.
[21] “Home | Apache Ivy TM.” [Online]. Available:

https://ant.apache.org/ivy/. [Accessed: 07-May-2017].
[22] “sbt/sbt-assembly,” GitHub. [Online]. Available:

https://github.com/sbt/sbt-assembly. [Accessed: 07-May-2017].
[23] “The Daily Build - write simple SBT task.” [Online]. Available:

http://blog.bstpierre.org/writing-simple-sbt-task. [Accessed:
07-May-2017].

[24] “bloomberg/spark-flow,” GitHub. [Online]. Available:
https://github.com/bloomberg/spark-flow. [Accessed: 08-May-2017].

[25] W. Zhu, H. Chen, and F. Hu, “ASC: Improving spark driver
performance with automatic spark checkpoint,” in Advanced
Communication Technology (ICACT), 2016 18th International
Conference on, 2016, pp. 607–611.

[26] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy, “Flint:
batch-interactive data-intensive processing on transient servers,” in
Proceedings of the Eleventh European Conference on Computer
Systems, 2016, p. 6.

[27] Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Moscibroda,
“TR-Spark: Transient Computing for Big Data Analytics,” in
Proceedings of the Seventh ACM Symposium on Cloud Computing,
New York, NY, USA, 2016, pp. 484–496.

[28] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Community structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters. Internet Mathematics, 2009

[29] A. M. Johansen, L. Evers, "Monte Carlo Methods”, University of
Bristol, Department of Mathematics

Bhuridech Sudsee received B.Eng. in Computer
Engineering from Suranaree University of
Technology and B.Sc. in Information Technology
from Sukhothai Thammathirat Open University, both
in Thailand. Currently, he is studying a Master
degree in Computer Engineering. His fields of
research interests are high-performance computing,
distributed computing, data storage, Big Data
processing and MapReduce frameworks.

Chanwit Kaewkasi received his PhD in Computer
Science from the University of Manchester, United
Kingdom in 2010. He is currently an Assistant
Professor at School of Computer Engineering,
Suranaree University of Technology, Thailand. Dr.
Kaewkasi is actively researching in the areas of
Low-Power Clusters, Cloud Computing, Big Data
and Software Container Technologies.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1090

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

T

Improving K Nearest Neighbor into String
Vector Version for Text Categorization

Taeho Jo
School of Game, Hongik University, 2639 Sejongro Sejong South Korea 30016

tjo018@hongik.ac.kr

Abstract— This research is concerned with the string vector
based version of the KNN which is the approach to the text
categorization. Traditionally, texts have been encoded into
numerical vectors for using the traditional version of KNN, and
encoding so leads to the three main problems: huge
dimensionality, sparse distribution, and poor transparency. In
order to solve the problems, this research propose that texts
should be encoded into string vectors the similarity measure
between string vectors is defined, and the KNN is modified into
the version where string vector is given its input. The proposed
KNN version is validated empirically by comparing it with the

research, we try to find the solution to the problems by
encoding texts into alternatives to both numerical vectors and
tables.

What we propose in this research is to encode texts into
string vectors and to modify the KNN as solutions to the
above problems. Texts are encoded into string vectors as their
structured forms, instead of numerical vectors. The semantic
similarity measure between two string vectors is defined as
the operation which corresponds to the cosine similarity
between two numerical vectors. Using the similarity measure,

traditional KNN version on the three collections: NewsPage.com , we modify the KNN (K Nearest Neighbor) into the version
Opiniopsis, and 20NewsGroups. The goal of this research is to
improve the text categorization performance by solving them.

Keyword— String Vector, K Nearest Neighbor, Text
Categorization

I. INTRODUCTION
HE text categorization is defined as the process of
classifying a text into its categoryor categories among the

predefined ones. Its preliminary task is to predefine a list of
categories and allocate sample texts each of them. As the
learning process, using the sample labeled texts, the
classification capacity which is given as equations,
parameters, or symbolic rules is constructed. As the
generalization process, subsequent texts which are given
separately from sample labeled ones are classified by the
constructed classification capacity. In this research, we
assume that the supervised learning algorithms will be used as
the approaches, even if other kinds of approaches are

available.
Let us consider the facts which provide the motivations for

doing this research. Encoding texts into numerical vectors
cause problems such as the huge dimensionality and the
sparse distribution [1][2][3][5][11]. Previously, we proposed
the table based classification algorithm which was called the
table matching algorithm, its performance was unstable by
impact of noisy examples [2][3]. The computation of the
similarity between two tables as the essential task in the
approach was very expensive [2][3]. Therefore, in this

———————————————————————
Manuscript received December 27, 2017. This work is sponsored by

2017 Hongik University Research Fund, and a follow-up of the invited
journal to the accepted & presented paper of the 19th International
Conference on Advanced Communication Technology (ICACT2017).

Taeho Jo is with School of Game, Hongik University, Sejong, Republic of
Korea (phone: +82-44-860-2125; e-mail: tjo018@hongik.ac.kr).

where a string vector is given as an input vector. The modified
version is applied as the approach to the task of classifying
news articles and opinions automatically.

In this research, we will validate empirically the proposed
approach to the text summarization as the better version than
the traditional KNN version. We extract paragraphs from the
collections of news articles: NewsPage.com, Opinopsis, and
20NewsGroups. The traditional KNN version and the
proposed version are compared with each other. We observe
the better results of the proposed KNN version in classifying
news articles into their own topics. It potentially possible to
require less dimension in encoding texts into string vectors, in
addition.

This article is organized into the four sections. In Section II,
we survey the relevant previous works. In Section III, we
describe in detail what we propose in this research. In Section
IV, we validate empirically what is proposed in this research.
In Section V, we mention the remaining tasks for doing the
further research.

II. PREVIOUSWORKS

Let us survey the previous cases of encoding texts into
structured forms for using the machine learning algorithms to
text mining tasks. The three main problems, huge
dimensionality, sparse distribution, and poor transparency,
have existed inherently in encoding them into numerical
vectors. In previous works, various schemes of preprocessing
texts have been proposed, in order to solve the problems. In
this survey, we focus on the process of encoding texts into
alternative structured forms to numerical vectors. In other
words, this section is intended to explore previous works on
solutions to the problems.

Let us mention the popularity of encoding texts into
numerical vectors, and the proposal and the application of
string kernels as the solution to the above problems. In 2002,
Sebastiani presented the numerical vectors are the standard

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1091

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

mailto:tjo018@hongik.ac.kr

representations of texts in applying the machine learning
algorithms to the text classifications [6]. In 2002, Lodhi et al.
proposed the string kernel as a kernel function of raw texts in
using the SVM (Support Vector Machine) to the text
classification [7]. In 2004, Lesile et al. used the version of
SVM which proposed by Lodhi et al. to the protein
classification [8]. In 2004, Kate and Mooney used also the
SVM version for classifying sentences by their meanings [9].

It was proposed that texts are encoded into tables instead of
numerical vectors, as the solutions to the above problems. In
2008, Jo and Cho proposed the table matching algorithm as
the approach to text classification [2]. In 2008, Jo applied also
his proposed approach to the text clustering, as well as the text
categorization [13]. In 2011, Jo described as the technique of
automatic text classification in his patent document [11]. In
2015, Jo improved the table matching algorithm into its more
stable version [12].

Previously, it was proposed that texts should be encoded
into string vectors as other structured forms. In 2008, Jo
modified the k means algorithm into the version which
processes string vectors as the approach to the text clustering
[13]. In 2010, Jo modified the two supervised learning
algorithms, the KNN and the SVM, into the version as the
improved approaches to the text classification [14]. In 2010,
Jo proposed the unsupervised neural networks, called Neural
Text Self Organizer, which receives the string vector as its
input data [15]. In 2010, Jo applied the supervised neural
networks, called Neural Text Categorizer, which gets a string
vector as its input, as the approach to the text classification
[16].

The above previous works proposed the string kernel as the
kernel function of raw texts in the SVM, and tables and string
vectors as representations of texts, in order to solve the
problems. Because the string kernel takes very much
computation time for computing their values, it was used for
processing short strings or sentences rather than texts. In the
previous works on encoding texts into tables, only table
matching algorithm was proposed; there is no attempt to
modify the machine algorithms into their table based version.
In the previous works on encoding texts into string vectors,
only frequency was considered for defining features of string
vectors. In this research, based on [14], we consider the
grammatical and posting relations between words and texts as
well as the frequencies for defining the features of string
vectors, and encode texts into string vectors in this research.

III. PROPOSED APPROACH

This section is concerned with encoding words into string
vectors, modifying the KNN (K Nearest Neighbor) into the
string vector based version and applying it to the text
categorization, and consists of the three sections. In Section
III-A, we deal with the process of encoding texts into string
vectors. In Section III-B, we describe formally the similarity
matrix and the semantic operation on string vectors. In
Section III-C, we do the string vector based KNN version as
the approach to the text categorization. Therefore, this section
is intended to describe the proposed KNN version as the text
categorization tool.

A. Text Encoding

This section is concerned with the process of encoding
texts into string vectors. As shown in Figure 1, the three steps
are involved in encoding texts. A single is given as the input
and a string vector which consists of words is generated as the
output. The features in each string vector are posting, statistic,
and grammatical relationships between a text and a word.
Therefore, this section is intended to describe in detail each
step involved in encoding texts.

Fig. 1. The Process of Text Encoding.

The first step of encoding texts into string vectors is to

index the corpus into a list of words. The texts in the corpus
are concatenated into a single long string and it is tokenized
into a list of tokens. Each token is transformed into its root
form, using stemming rules. Among them, the stop words
which are grammatical words such as propositions,
conjunctions, and pronouns, irrelevant to text contents are
removed for more efficiency. From the step, verbs, nouns, and
adjectives are usually generated as the output.

We need to define the relationships between a word and a
text as the features of string vectors, and mention the three
types of them. The first type is statistical properties of words
in a text such as the highest frequent word and the highest
TF-IDF (Term Frequency-Inverse Term Frequency) weighted
one. The grammatical properties of a word such as subjective
noun, objective noun, and verb may be considered as another
feature type. Posting properties of a word which indicates its
position in the given text, such as the first word in the text, the
last of in the text, and the first word in the last paragraph, may
be regarded as a feature type. In this research, we define the
ten features of string vectors as follows:
 Highest Frequent Word in the given Text
 Second Highest Frequent Word in the given Text
 Third Highest Frequent Word in the given Text
 Highest TF-IDF Weighted Word
 Second Highest TF-IDF Weighted Word
 Third Highest TF-IDF Weighted Word
 The Last Word in the Text
 The First Word in the last Paragraph
 The Last Word in the First Paragraph
Let us explain the process of encoding a text into a string,

once the above features are defined. A text is indexed into a
list of words, their frequencies, and their TF-IDF weights, and
it is partitioned into a list of paragraphs. Corresponding to the
above features, words are extracted as elements of the string
vector. As the given text representation, the ten dimensional
string vector which consists of the above feature values is

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1092

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

constructed. The similarity matrix is required for performing
the operation on string vectors, and is described in Section
III-B1.

Let us consider the differences between the word encoding
and the text encoding. Elements of each string vector which
represents a word are text identifiers, whereas those of one
which represents a text are word. The process of encoding
texts involves the link of each text to a list of words, where as
that of doing words does the link of each word to a list of texts.
For performing semantic similarity between string vectors, in
text processing, the word similarity matrix is used as the basis,
while in word processing, the text similarity matrix is used.
The relations between words and texts are defined as features
of strings in encoding texts and words.

B. String Vector

This section is concerned with the operation on string
vectors and the basis for carrying out it. It consists of two
subsections and assumes that a corpus is required for
performing the operation. In Section III-B1, we describe the
process of constructing the similarity matrix from a corpus. In
Section III-B2, we define the string vector formally and
characterize the operation mathematically. Therefore, this
section is intended to describe the similarity matrix and the
operation on string vectors.

Similarity Matrix
This subsection is concerned with the similarity matrix as

the basis for performing the semantic operation on string
vectors. Each row and column of the similarity matrix
corresponds to a word in the corpus. The similarities of all
possible pairs of words are given as normalized values
between zero and one. The similarity matrix which we
construct from the corpus is the N X N square matrix with
symmetry elements and 1’s diagonal elements. In this
subsection, we will describe formally the definition and
characterization of the similarity matrix.

Each entry of the similarity matrix indicates a similarity

between two corresponding words. The two words, it , and

jt are viewed into two sets of texts which include them, iT ,

and jT . The similarity between the two words is computed by

equation (1),

 
ji

ji

ji
TT

TT
ttsim




2
, (1)

where iT is the cardinality of the set, iT . The similarity is

always given as a normalized value between zero and one; if
two words are exactly same to each other, the similarity
becomes 1.0 as equation (2):

  0.1
2

, 



ji

ii
ii

TT

TT
ttsim


 (2)

and if two words have no shared texts, ji TT  , the

similarity becomes 0.0 as equation (3):

  0.0
022

, 







jiji

ii
ii

TTTT

TT
ttsim


 (3)

The more advanced schemes of computing the similarity will
be considered in next research.

From the text collection, we build N X N square matrix as
follows:



















NNNN

N

N

sss

sss

sss

...

............

...

...

21

22221

11211

N individual words which are contained in the collection
correspond to the rows and columns of the matrix. The entry,

ijs is computed by equation (1) as equation (4):

 jiij ttsims , (4)

The overestimation or underestimation by text lengths are
prevented by the denominator in equation (1). To the number

of words, N, it costs quadratic complexity,  2NO , to build

the above matrix
Let us characterize the above similarity matrix,

mathematically. Because each column and row corresponds
to its same text in the diagonal positions of the matrix, the
diagonal elements are always given 1.0 by equation (2). In the
off-diagonal positions of the matrix, the values are always
given as normalized ones between zero and one, because of

jiii TTTT  20 from equation (1). It is proved

that the similarity matrix is symmetry, as equation (5):

 

  jiij

ij

ij

ji

ji

jiij

sttsim

TT

TT

TT

TT
ttsims









,

22
,


 (5)

Therefore, the matrix is characterized as the symmetry matrix
which consists of the normalized values between zero and
one.

The similarity matrix may be constructed automatically
from a corpus. The N texts which are contained in the corpus
are given as the input and each of them is indexed into a list of
words. All possible pairs of words are generated and the
similarities among them are computed by equation (1). By
computing them, we construct the square matrix which
consists of the similarities. Once making the similarity matrix,
it will be used continually as the basis for performing the
operation on string vectors.

String Vector and Semantic Similarity
This section is concerned with the string vectors and the

operation on them. A string vector consists of strings as its
elements, instead of numerical values. The operation on string
vectors which we define in this subsection corresponds to the
cosine similarity between numerical vectors. Afterward, we
characterize the operation mathematically. Therefore, in this
section, we define formally the semantic similarity as the
semantic operation on string vectors.

The string vector is defined as a finite ordered set of strings
as equation (6):

 dstrstrstr ,...,, 21str (6)

An element in the vector, istr indicates a word which

corresponds to its attribute. The number of elements of the
string vector, str , is called its dimension. In order to perform

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1093

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

the operation on string vectors, we need to define the
similarity matrix which was described in section 2.1, in
advance. Therefore, a string vector consists of strings, while a
numerical vector does of numerical values.

We need to define the semantic operation which is called
‘semantic similarity’ in this research, on string vectors; it
corresponds to the cosine similarity on numerical vectors. We
note the two string vectors as equation:

 dttt 112111 ,...,,str and  dttt 222212 ,...,,str

where each element, it1 or 12t , indicates a word. The

operation is defined as equation (7) as follows:

   



d

i
ii ttsim

d
sim

1
2121 ,

1
,strstr (7)

The similarity matrix was constructed by the scheme which is

described in section 2.1, and the  ii ttsim 21 , is computed by

looking up it in the similarity matrix. Instead of building the
similarity matrix, we may compute the similarity,
interactively.

The semantic similarity measure between string vectors
may be characterized mathematically. The commutative law
applies as equation (8):

   

   12
1

12

1
2121

,,
1

,
1

,

strstr

strstr

simttsim
d

ttsim
d

sim

d

i
ii

d

i
ii












 (8)

If the two string vectors are exactly same, its similarity
becomes 1.0 as follows:

If 21 strstr  with   0.1,, 21  iii ttsim ,

    0.1,
1

,
1

1121  
 d

d
ttsim

d
sim

d

i
iistrstr

However, note that the transitive rule does not apply as
follows:

If   0.0, 21 strstrsim and   0.0, 32 strstrsim , not

always   0.0, 31 strstrsim

We need to define the more advanced semantic operations
on string vectors for modifying other machine learning
algorithms. We define the update rules of weights vectors
which are given as string vectors for modifying the neural
networks into their string vector based versions. We develop
the operations which correspond to computing mean vectors
over numerical vectors, for modifying the k means algorithms.
We consider the scheme of selecting representative vector
among string vectors for modifying the k medoid algorithms
so. We will cover the modification of other machine learning
algorithms in subsequent researches.

C. The Proposed Version of KNN

This section is concerned with the proposed KNN version
as the approach to the text categorization. Raw texts are
encoded into string vectors by the process which was
described in Section III-A. In this section, we attempt to the
traditional KNN into the version where a string vector is given
as the input data. The version is intended to improve the
classification performance by avoiding problems from
encoding texts into numerical vectors. Therefore, in this

section, we describe the proposed KNN version in detail,
together with the traditional version.

The traditional KNN version is illustrated in Figure 2. The
sample words which are labeled with the positive class or the
negative class are encoded into numerical vectors. The
similarities of the numerical vector which represents a novice
word with those representing sample words are computed
using the Euclidean distance or the cosine similarity. The k
most similar sample words are selected as the k nearest
neighbors and the label of the novice entity is decided by
voting their labels. However, note that the traditional KNN
version is very fragile in computing the similarity between
very sparse numerical vectors.

Fig. 2. The Traditional Version of KNN.

Separately from the traditional one, we illustrate the
classification process by the proposed version in Figure 3.
The sample texts labeled with the positive or negative class
are encoded into string vectors by the process described in
Section III-A. The similarity between two string vectors is
computed by the scheme which was described in Section
III-B2. Identically to the traditional version, in the proposed
version, the k most similarity samples are selected, and the
label of the novice one is decided by voting ones of sample
entities. Because the sparse distribution in each string vector
is never available inherently, the poor discriminations by
sparse distribution are certainly overcome in this research.

Fig. 3. The Proposed Version of KNN.

We may derive some variants from the proposed KNN
version. We may assign different weights to selected
neighbors instead of identical ones: the highest weights to the
first nearest neighbor and the lowest weight to the last one.
Instead of a fixed number of nearest neighbors, we select any
number of training examples within a hyper-sphere whose
center is the given novice example as neighbors. The
categorical scores are computed proportionally to similarities
with training examples, instead of selecting nearest neighbors.
We may also consider the variants where more than two
variants are combined with each other.

Because string vectors are characterized more symbolically

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1094

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

than numerical vectors, it is easy to trace results from
classifying items in the proposed version. It is assumed that a
novice item is classified by voting the labels of its nearest
neighbors. The similarity between string vectors is computed
by the scheme which is described in Section III-B2. We may
extract the similarities of individual elements of the novice
string vector with those of nearest neighbors labeled with the
classified category. Therefore, the semantic similarities play
role of the evidence for presenting the reasons of classifying
the novice one so.

IV. EXPERIMENTAL RESULTS

This section is concerned with the empirical experiments
for validating the proposed version of KNN, and consists of
the four sections. In Section I, we present the results from
applying the proposed version of KNN to the text
categorization on the collection, NewsPage.com. In Section II,
we show the results from applying it for categorizing texts
from the collection, Opinosis. In Section III, we mention the
results from comparing the two versions of KNN with each
other in categorizing texts from 20NewsGroups. In Section
IV, we make the general discussions which is concerned with
results from validating the proposed version of KNN, finally.

A. NewsPage.com
This section is concerned with the experiments for

validating the better performance of the proposed version on
the collection: NewsPage.com. The four categories are
predefined in this collection, and texts are gathered from the
collection category by category as labeled ones. Each text is
classified exclusively into one of the four categories. In this
set of experiments, we apply the traditional and proposed
version of KNN to the classification task, without
decomposing it into the binary classifications, and use the
accuracy as the evaluation measure. Therefore, in this section,
we observe the performance of the both versions of KNN by
changing the input size.

In Table I, we specify the text collection, NewsPage.com,
which is used in this set of experiments. This text collection
was used for evaluating approaches to text categorization in
previous works [1][3][13]. In the collection, the four
categories are predefined: Business, Health, Internet, and
Sports, and 375 texts are selected at random in each category.
In each category, the set of 375 texts is partitioned into the
300 texts as training ones and the 75 texts as test ones. The
text collection was built by copying and pasting individual
news articles from the web site, newspage.com, in 2005, as
plain text files whose extension is ‘txt’.

TABLE I
The Number of Texts in NewsPage.com

Let us mention the experimental process for validating
empirically the proposed approach to the task of text
categorization. In this collection, the texts are labeled with
one of the four categories which are presented in Table I, and
they are encoded into numerical and string vectors. For each

test example, the KNN computes its similarities with the 1200
training examples and selects the three most similarity
training examples as its nearest neighbors. Each of the 300
test examples is classified into one of the four categories:
Business, Sports, Internet, and Health, by voting the labels of
its nearest neighbors. We compute the classification accuracy
by dividing the number of correctly classified test examples
by the number of test examples, for evaluating the both
versions of KNN algorithm.

In Figure 4, we illustrate the experimental results from
categorizing texts, using the both versions of KNN algorithm.
The y-axis indicates the accuracy which is the rate of the
correctly classified examples in the test set. In the x-axis, each
group indicates the input size which is the dimension of
numerical vectors which represent texts. In each group, the
gray bar and the black bar indicate the achievements of the
traditional version and the proposed version of KNN
algorithm, respectively. In the x-axis, the most right group
indicates the average over the accuracies of the left groups.

Fig. 4. Results from Classifying Texts in Text Collection: NewsPage.com

Let us make the discussions on the results from doing the

text categorization using the both versions of KNN algorithm,
as shown in Figure 4. The accuracy which is the performance
measure of the classification task is in the range between 0.35
and 0.52. The proposed version of KNN algorithm works
strongly better in the all input sizes. The performance
difference between the two versions is outstanding in the two
input sizes, 50 and 100. From this set of experiments, we
conclude that the proposed version works strongly better than
the traditional one, in averaging over the four cases.

B. OPINOPSIS
This section is concerned with the set of experiments for

validating the better performance of the proposed version on
the collection, Opinopsis. The three categories are predefined
in the collection, and labeled texts are prepared from it. Each
text is classified exclusively into one of the three categories.
We do not decompose the given classification into binary
classifications and use the accuracy as the evaluation measure.
Therefore, in this section, we observe the performances of the
both versions of KNN algorithm with the different input sizes.
In Table II, we specify the text collection, Opinosis, which

is used in this set of experiments. The collection was used in
previous works for evaluating approaches to text
categorization. The three categories, ‘Car’, ‘Electronics’, and
 ‘Hotel’, are predefined, and all texts are used for evaluating
the approaches to text categorization, in this set of
experiments. We use six texts in each category among all texts
as the test set as shown in Table II. We obtained the collection

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1095

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

by downloading it from the web site,
http://archive.ics.uci.edu/ml/machine-learningdatabases/
opinion/.

TABLE II

We perform this set of experiments by the process which is

described in Section I. We use all of 51 texts which are
labeled with one of the three categories and encode them into
numerical vectors and string vectors with the input sizes: 10,
50, 100, and 200. For each test example, the both versions of
KNN computes its similarities with the 33 training examples
and select the three most similar training examples as its
nearest neighbors. Each of the 18 test examples is classified
into one of the three categories, by voting the labels of its
nearest neighbors. The classification accuracy is computed by
the number of correctly classified test examples by the
number of the test examples for evaluating the both versions
of KNN algorithm.

In Figure 5, we illustrate the experimental results from
categorizing texts using the both versions of KNN algorithm.
Like Figure 4, the y-axis indicates the value of accuracy, and
the x-axis indicates the group of both versions by an input size.
In each group, the gray bar and the black bar indicate the
achievements of the traditional version and the proposed
version of KNN algorithm, respectively. In Figure 5, the most
right group indicates the averages over results over the left
four groups. Therefore, Figure 5 presents the results from
classifying each text into one of the three categories by the
both versions, on the text collection, Opinosis.

We discuss the results from doing the text categorization
using the both versions of KNN algorithm, on Opinosis,
shown in Figure 5. The accuracy values of the bother versions
range between 0.55 and 1.0. The proposed version works
better than the traditional one in the all input sizes. It shows
the perfect results in the input size: 200. From this set of
experiments, we conclude that the proposed version works
outstandingly better than the traditional one, in averaging the
four cases.

four specific categories are predefined in this collection. Each
text is exclusively classified into one of the four categories,
like the previous sets of experiments. We apply the two
versions of KNN algorithm, directly to the classification task,
without decomposing it into binary classifications, and use the
accuracy as the evaluation metric. Therefore, in this section,
we observe the performances of the both versions of KNN
algorithm with the different input sizes.

In Table III, we specify the specific version of
20NewsGroups which is used as the test collection, in this set
of experiments. Within the general category, sci, we predefine
the four categories: ‘electro’, ‘medicine’, ‘script’, and ‘space’.
In each category, we select 375 texts among approximately
1000 texts, at random. In each category, the set of 375 texts is
partitioned into the training set of 300 texts and the test set of
75 texts, like the case in the previous set of experiments.

TABLE III

The Number of Texts in Opiniopsis

The process of doing this set of experiments is same to that

in the previous sets of experiments. We select the balanced
number of texts from the collection over categories, and
encode them into the representations with the input sizes
which are identical to those in the previous set of experiments.
We use the two versions of KNN algorithm for their
comparisons. Using the two versions of KNN algorithm, we
classify each text in the test set into one of the four specific
categories within the general category, ‘ sci’: ‘electro’,
 ‘medicine’, ‘script’, and ‘space’. We use the accuracy as the
evaluation metric, like the previous set of experiments.

We present the experimental results from classifying the
texts using the both versions of KNN algorithm on the
specific version of 20NewsGroups. The frame of illustrating
the classification results is identical to the previous ones. In
each group, the gray bar and the black bar stand for the
achievements of the traditional version and the proposed
version, respectively. The y-axis in Figure 6, indicates the
classification accuracy which is used as the performance
metric. The texts are classified directly to one of the four
categories like the cases in the previous sets of experiments.

Fig. 5. Results from Classifying Texts in Text Collection: Opiniopsis

C.20NewsGroups
This section is concerned with one more set of experiments

where the better performance of the proposed version is
validated on 20NewsGroups. In this set of experiments, the

Fig. 6. Results from Classifying Texts in Text Collection: 20NewsGroups

Let us discuss on the results from classifying the texts on
the specific version of 20NewsGroups, as shown in Figure 6.

The Number of Texts in Opiniopsis

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1096

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

http://archive.ics.uci.edu/ml/machine-learningdatabases/

The accuracies of the both versions range between 0.4 and
0.91. The proposed version shows its better performance in
the smaller input sizes, but its turning point in the input size,
100. In the traditional version, its performance is proportional
to the input size, whereas in the proposed version, its
performance is independent of the factor. By the way, from
this set of experiments, it is concluded that the proposed
version have its outstandingly better performance, by
averaging over the accuracies of the four input sizes.

V. CONCLUSION

Let us discuss the entire results from classifying texts using
the two versions of KNN algorithm. The both versions is
compared with each other in the task of text categorization, in
these sets of experiments. The proposed version show its
better results in all of the three collections. The accuracies of
the traditional version range between 0.35 and 0.81, while
those of the proposed version range between 0.49 and 1.0.
From the three sets of experiments, we conclude that the
proposed version improves the text categorization
performance, as the contribution of this research.

We need to consider the remaining tasks for doing the
further research. We will apply and validate the proposed
approach in classifying texts in the specific domains such as
medicine, engineering, and law, rather than the general
domains. In order to improve the performance, we may
consider various types of features of string vectors. As
another scheme of improving the performance, we define and
combine multiple similarity measures between two string
vectors with each other. By adopting the proposed approach,
we may implement the text categorization system as a module
or an independent system.

ACKNOWLEDGMENT

This work was supported by 2017 Hongik University
Research Fund.

REFERENCES

[1] T. Jo, The Implementation of Dynamic Document Organization using
Text Categorization and Text Clustering. PhD Dissertation of
University of Ottawa, 2006.

[2] T. Jo and D. Cho, “Index Based Approach for Text Categorization”,
International Journal of Mathematics and Computers in Simulation,
vol. 2, pp. 127-132, 2008.

[3] T. Jo, “Table based Matching Algorithm for Soft Categorization of
News Articles in Reuter 21578”, Journal of Korea Multimedia Society,
vol. 11, pp. 875-882, 2008.

[4] T. Jo, “`Topic Spotting to News Articles in 20NewsGroups with NTC”,
Lecture Notes in Information Technology, pp50-56, vol. 7, 2011.

[5] T. Jo, “Definition of String Vector based Operations for Training
NTSO using Inverted Index”, Lecture Notes in Information
Technology, pp50-56, vol. 7, 2011.

[6] F. Sebastiani, ̀ `Machine Learning in Automated Text Categorization",
ACM Computing Survey, vol. 34, pp. 1-47, 2002.

[7] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C.
Watkins, “Text Classification with String Kernels”, Journal of
Machine Learning Research, vol. 2, pp. 419-444, 2002.

[8] C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble,
“Mismatch String Kernels for Discriminative Protein Classification”,
Bioinformatics, vol. 20, pp. 467-476, 2004.

[9] R. J. Kate and R. J. Mooney, “Using String Kernels for Learning
Semantic Parsers”, Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pp. 913-920, 2006.

[10] S. Chen, B. Mulgrew, and P. M. Grant, “A clustering technique for
digital communications channel equalization using radial basis
function networks,” IEEE Trans. Neural Networks, vol. 4, pp.
570–578, Jul. 1993.

[11] T. Jo, “Single Pass Algorithm for Text Clustering by Encoding
Documents into Tables”, Journal of Korea Multimedia Society, vol. 11,
pp. 1749-1757, 2008.

[12] T. Jo, “Device and Method for Categorizing Electronic Document
Automatically”, Patent Document, 10-2009-0041272, 10-1071495,
2011.

[13] T. Jo, “Normalized Table Matching Algorithm as Approach to Text
Categorization”, Soft Computing, vol. 19, pp. 839-849, 2015.

[14] T. Jo, “Inverted Index based Modified Version of K-Means Algorithm
for Text Clustering”, Journal of Information Processing Systems, Vol
4, pp. 67-76, 2008.

[15] T. Jo, “Representation of Texts into String Vectors for Text
Categorization”, Journal of Computing Science and Engineering, vol.
4, pp. 110-127, 2010.

[16] T. Jo, “NTSO (Neural Text Self Organizer): A New Neural Network for
Text Clustering”, Journal of Network Technology, vol. 1, pp. 31-43,
2010.

[17] T. Jo, “NTC (Neural Text Categorizer): Neural Network for Text
Categorization”, International Journal of Information Studies, vol. 2,
pp.83-96, 2010.

Taeho Jo works currently as a faculty
member in Hongik University, South
Korea. He received his Bachelor degree
from Korea University in 1994, his Master
degree from Pohang University of Science
and Technology in 1997, and his PhD
degree from University of Ottawa in 2006.
His research area spans mainly over text
mining, neural networks, machine
learning, and information retrieval. He
has the four year experience of working
for industrial organizations and ten year

experience of working for academic ones. Recently, he is awarded in the
world wide biography dictionary, Marquis Who’s Who in the World,
two times in 2016 and 2018.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1097

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

	ICACT_TACT_front_V7_I1
	1. Journal Editorial Board
	Editor-in-Chief
	Editors

	2. Journal Editor Guide
	Introduction for Editor or Reviewer
	Role of the Editor
	Deadlines for Regular Review
	Making Decisions on Manuscript
	Role of the Reviewer

	3. Journal Procedure
	Step 1. Journal Full Paper Submission
	Step 2. Full Paper Review
	Step 3. Acceptance Notification
	Step 4. Payment Registration
	Step 5. Camera Ready Form (CRF) Manuscripts Submission

	4. Journal Submission Guide
	V7_I1_Index
	1. An Improvement of a Checkpoint-based Distributed Testing Technique on a Big Data Environment
	I. INTRODUCTION
	II. BACKGROUND AND RELATED WORK
	III. DESIGN AND IMPLEMENTATION
	IV. EXPERIMENTS
	V. CONCLUSIONS AND FUTURE WORK
	REFERENCES

	2-Improving K Nearest Neighbor into String Vector Version for Text Categorization - 20180278
	III. PROPOSED APPROACH
	IV.EXPERIMENTALRESULTS
	V. CONCLUSION
	REFERENCES

	ICACT_TACT_Rear_V7_I1

