

Diffusion-Based Cardiac Fibrosis Progression Synthesis and Severity Estimation with FinFET-Compatible AI Accelerator Framework

Rubina Akter Rabeya*, Md Turiqul Islam**, Shah Muhammad Imtiyaj Uddin*, Jeong-Wook Seo***,
Hanjung Song**, Heung-Kook Choi****, Hee-Cheol Kim*

**Digital Anti-Aging Healthcare, Inje University, Gimhae, South Korea*

***Nanoscience and Engineering, Inje University, Gimhae, South Korea*

****Department of Pathology, Incheon Sejong Hospital, Seoul, South Korea*

*****Computer Science & Engineering, Inje University, Gimhae, South Korea*

rubinatr20@gmail.com, tonmoy11105063@gmail.com, imtiyaj.dream@gmail.com, jwseo@snu.ac.kr,
hjsong@inje.ac.kr, cschk@inje.ac.kr, heeki@inje.ac.kr

Abstract—Ischemic fibrosis is a critical pathological indicator in cardiac aging and post-infarction tissue remodeling. Yet, its temporal evolution is poorly understood due to limited annotated histopathology data across disease stages. In this work, we propose a novel diffusion-driven generative AI framework to synthesize progressive stages of ischemic fibrosis and estimate severity from high-resolution cardiac histopathology images. Based on a carefully selected dataset of 5,000 Masson's trichrome-stained patches (512×512 pixels), our model uses a Latent Diffusion Model (LDM) to produce plausible scenarios of fibrosis progression conditioned on pathological precedents. To support future real-time and low-power clinical deployment, we introduce a FinFET-compatible AI accelerator blueprint that maps core model components—including the denoising UNet, progression generator, and severity estimation module—into modular FinFET logic blocks. Our experiments demonstrate high-fidelity image synthesis with a Frechet Inception Distance (FID) of 13.2 and accurate fibrosis segmentation (Dice Score: 0.91). This work presents a forward-looking, hybrid software–nanoelectronics framework to enable explainable, energy-efficient fibrosis modelling at the edge paving the way for next-generation digital anti-aging diagnostics in cardiovascular pathology.

Keyword—Cardiac Fibrosis, Latent Diffusion Models (LDMs), Histopathology Image Synthesis, Segmentation and Severity Estimation, FinFET AI Accelerator, Digital Pathology.

Rubina Akter Rabeya is currently continuing her PhD in Artificial Intelligence in Healthcare at Inje University. She completed her bachelor's degree in computer science and engineering from the International University of Business Agriculture and Technology (IUBAT) in 2021. Later, she received a Brain Korea (BK21) scholarship to pursue her master's degree in Artificial Intelligence in Healthcare, Inje University, South Korea, in the year of 2023. Her areas of interest include generative artificial intelligence, XAI, medical image processing, natural language processing, and computer vision etc.

Md. Turiqul Islam is currently continuing his PhD in Nanoscience and Engineering at Inje University. He has completed his Master's (MSc) in Nanoscience and Engineering from Inje University, South Korea. He has completed his Bachelor's (B.Sc.) Engineering in Electrical and Electronics Engineering from the International University of Business Agriculture & Technology (IUBAT). He is a lecturer (on study leave) in the Department of Electrical and Electronics Engineering, International University of Business Agriculture and Technology (IUBAT), Dhaka, Bangladesh. His areas of interest are Nanotechnology, Neuromorphic applications, Retinal Neural Circuits, Machine Learning, FinFET Technology, Analog Integrated Circuit, and CMOS Technology.

Shah Muhammad Imtiyaj Uddin is a PhD research fellow at the Institute of Digital Anti-Aging Healthcare, Inje University. His expertise includes mobile and web development, artificial intelligence, computer vision, machine learning, and medical image processing. He is currently focusing his research on AI-driven healthcare solutions, with a particular emphasis on medical image analysis, generative AI, and natural language processing (NLP). Imtiyaz is passionate about combining his development skills with AI research to create innovative applications that can transform industries and enhance everyday life.

Dr. Jeong-Wook Seo is Professor Emeritus at Seoul National University College of Medicine, specializing in congenital and adult cardiac pathology. He served as Professor in the Department of Pathology from 1997–2021 and is currently Director of the Clinical Research Institute at Incheon Sejong Hospital and Chairman of the Woochon Research Foundation. His research interests include congenital heart disease, arrhythmia, structural heart disease, and 3D printing of cardiac lesions. He earned his MD and PhD from Seoul National University and completed postdoctoral fellowships in the UK and the USA. Dr. Seo has held leadership roles in multiple pathology societies and served as Editor-in-Chief of major Korean pathology journals.

Hanjung Song was born in South Korea. He received his B.S., M.S., and PhD degrees in Electronics Engineering from Hanyang University, Korea, in the year of 1986, 1988, and 2000, respectively. He joined the Nano design circuit laboratory, Inje University, South Korea, in 2004, where he is currently a Head and Professor in the department of Nanoscience engineering. He has published several research papers in refereed International Journals. He is carrying out three sponsored research projects as Principal Investigator. His research interests include power IC circuit design, analog VLSI design of silicon neuron systems and chaotic circuits, Semiconductor device modelling, and reliability.

Heung-Kook Choi is an emeritus professor of Computer Engineering at Inje University and operates the Medical Image Technology Laboratory (MITL). In 1988 and 1990, he received his Bachelor of Engineering and Master of Engineering from Linköping University in Sweden, and his Ph.D. from Uppsala University in 1996. He served as the President of the Academy and Industry Cooperation Foundation and Dean of Research Affairs at Inje University, Korea, from 2006 to 2010. He was the president of the Koran Multimedia Society in 2013. He is interested in computer graphics, multimedia, image processing, and analysis.

Hee-Cheol Kim, BSc at the Department of Mathematics, MSc at the Department of Computer Science at SoGang University in Korea, and Ph.D. in Numerical Analysis and Computing Science at Stockholm University in Sweden. Presently, he is a professor and Head of the Department of the Institute. Digital Anti-aging Healthcare, Inje University, S: Korea. He has been working as a chair at the KICC international conference. His research interests include Machine learning, Text mining, Bioinformatics, Image processing, Artificial Intelligence, Machine learning etc.