

A Cooperative Retransmission Control Scheme for CoAP in Constrained IoT Networks

Munene Kanampiu, Jinsuk Baek

Department of Computer Science, Winston-Salem State University, Winston-Salem, NC, USA

kanampiumw@wssu.edu, baekj@wssu.edu

Abstract—These The Constrained Application Protocol (CoAP) enables RESTful communication for resource-constrained IoT devices over UDP. However, in Separate Response mode, delayed or lost Empty Acknowledgments (ACKs) can trigger unnecessary retransmissions, causing duplicate responses, energy waste, and higher latency. This paper proposes a cooperative retransmission control scheme that enhances CoAP reliability without modifying its standard. The client employs an adaptive retransmission timeout (RTO) using an exponentially weighted moving average (EWMA) of round-trip times, while the server applies a two threshold duplicate suppression mechanism that differentiates between transient delays and actual losses. Together, these components dynamically balance reliability and responsiveness. Simulation and analytical results in 6LoWPAN environments show reductions of up to 45% in redundant messages, 25% in latency, and 18% in energy consumption compared with baseline CoAP. The proposed scheme provides a lightweight, fully compliant improvement for scalable, low-power IoT networking.

Keyword—About CoAP, Retransmission Control, Adaptive Timeout, Duplicate Suppression, IoT.

Munene Kanampiu is an Assistant Professor of Computer Science at Winston-Salem State University (WSSU), North Carolina, USA. He received his Ph.D. in Computer Science from North Carolina A&T State University in 2018. He has extensive research experience in Cybersecurity, Robotics, IoT, Networking Protocols, and Data Analytics.

Jinsuk Baek is a Professor of Computer Science at Winston-Salem State University (WSSU), North Carolina, USA. He received his Ph.D. in Computer Science from the University of Houston in 2004 and joined WSSU the following year. Dr. Baek's research spans quantum computing, networking, security protocols, and 3D printing methodologies, with his work published in leading journals and conferences. Recently, he developed an innovative 3D food printer capable of producing edible chocolate, a breakthrough that has attracted significant attention in the field of food technology. He has been awarded multiple grants to advance research and education in quantum computing as well as AI-driven robotics for food technology. Dr. Baek's academic and industrial contributions are widely recognized, and he continues to pioneer new directions at the intersection of computing, quantum science, and emerging technologies.