

Integrating Auditing and Inspection into Metaverse-Based Healthcare and Pharmaceutical Supply Chains

Muhammad Mohsan Sheeraz*, Md Ariful Islam Mozumder**, Abdullah Yousafzai*, Ibrar Yaqoob*

*Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst, Australia

**Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae-si, Republic of Korea

msheeraz@csu.edu.au, arifulislamro@gmail.com, ayousafzai@csu.edu.au, iyaqoob@csu.edu.au

Abstract—Metaverse-based healthcare and pharmaceutical supply chains aim to enhance operations by providing greater visibility, virtual representations of facilities and material flows, and innovative methods for coordination and training. However, these metaverse-based systems largely overlook critical regulatory functions, such as auditing and inspection. Audit planning, evidence review, and deviation assessment remain only loosely integrated with the live data streams and digital twin models available on these platforms. Consequently, risk oversight continues to be episodic and reactive, rather than continuous and proactive. To address this gap, we propose an architecture specifically designed to integrate auditing and inspection into metaverse-based healthcare and pharmaceutical supply chain environments. We integrate heterogeneous operational and sensor data with edge and cloud services, an analytics engine, and an immersive metaverse platform hosting interactive digital-twin models of facilities, logistics assets, and processes. We build on this infrastructure with a data lifecycle model supported by three algorithms for data collection, preprocessing, and analysis and risk assessment, enabling compliance-oriented monitoring and prioritization of anomalies and potential non-compliance events. We also consider constraints affecting metaverse-based audits, including technical limitations (i.e., connectivity, latency, device capabilities, and integration), regulatory requirements (i.e., data integrity, audit trails, and validation), and adoption and ethical considerations (i.e., training, human factors, privacy, and trust). Overall, we provide a structured blueprint for future implementations and empirical studies of immersive and data-driven audits in regulated metaverse-based healthcare and pharmaceutical supply chains.

Keyword—Audit, Healthcare, Immersive Environment, Inspection, Metaverse, Supply Chain

Muhammad Mohsan Sheeraz is a PhD student at the Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Australia. He received his master's degree from Inje University, South Korea. Prior to joining the AICF institute, he worked at Nportverse Co. Ltd. in South Korea as part of the blockchain research team, where he contributed to projects in live casinos, cryptocurrency exchanges, and NFT marketplaces, as well as the development and implementation of innovative blockchain solutions. His research interests focus on advancing decentralized identity frameworks, blockchain-based governance models, and their applications in virtual environments such as the Metaverse. Muhammad Mohsan Sheeraz is also a student member of IEEE.

Md Ariful Islam Mozumder is pursuing his PhD in the Institute of Digital Anti-Aging Healthcare at Inje University. He has previously worked on multiple real-life projects related to computer vision, data sciences, Natural Language Processing and Medical Image Processing. His research interest aligns with Image Processing, Medical Image Processing, Digital Pathology, Signal Processing, Algorithms, and Metaverse. Mr Ariful is student member of IEEE, he is active reviewer of IEEE ICACT, and he is the committee member of IEEE ICECET 2026 & 2027.

Abdullah Yousafzai is an academic staff member at the Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Australia. He has worked as a postdoctoral research fellow under the Brain Korea 21st Century Plus grant at the Department of Computer Science and Engineering, Kyung Hee University, South Korea. He was involved in industrial projects for blockchain-based solutions and IT infrastructure initiatives. Before that, he was a research assistant at the Centre for Mobile Cloud Computing Research (C4MCCR) at the University of Malaya. Abdullah received his Ph.D. from the University of Malaya in 2017. He was a young Tenure Track Associate Professor at the University of Central Punjab, Lahore, Pakistan. He is the recipient of multiple awards. His research primarily focuses on distributed computing environments, including cloud computing systems, edge computing, mobile cloud computing, blockchain systems, machine learning, and the Internet of Things.

Ibrar Yaqoob (S'16-M'18-SM'19) has been a visiting academic at the University of Cambridge, United Kingdom. He is the program lead for the Smart and Resilient Supply Chains stream at the AI and Cyber Futures (AICF) Institute, Charles Sturt University, Australia. Before joining the AICF institute, he worked as a Research Scientist in the Department of Electrical Engineering and Computer Science at Khalifa University, United Arab Emirates. Previously, he was a research professor in the Department of Computer Science and Engineering at Kyung Hee University, South Korea. He received his Ph.D. in Computer Science from the University of Malaya, Malaysia. He serves on the editorial boards of IEEE, Elsevier, and Springer journals and has been actively involved in numerous conferences and workshops in various capacities, including Chair, Co-chair, and Track Chair. He has been recognized as a Highly Cited Researcher (HCR) by Clarivate-Web of Science for multiple years 2023, 2022, and 2021. His current research focuses on leveraging blockchain, NFTs, and the metaverse for healthcare, supply chain and logistics, IoT, and smart cities. In the past, he has conducted research in mobile edge-cloud computing, IoT, computer networks, and big data.