

BRIGHT: A Bayesian Reinforcement Learning Framework for Intelligent Traffic Monitoring and Measurement

Hao Gong* **, Jun Chen* **, Xiaodong Zhu* **

*School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing, China

***National Network New Media Engineering Research Center, Institute of Acoustics,
Chinese Academy of Sciences, Beijing, China*

gonghao23@mails.ucas.ac.cn, chenj@dsp.ac.cn, zhuxd@dsp.ac.cn

Abstract—Recent deployments of software-defined networking (SDN), especially OpenFlow, have enabled fine-grained traffic monitoring and traffic matrix (TM) estimation, yet existing methods still struggle under tight monitoring budgets in large networks due to three limitations: (1) lack of reasoning-driven adaptive monitoring plans that adjust intensity to traffic dynamics; (2) weak coupling between monitoring and inference, with little explicit per-flow uncertainty modeling for TM optimization; and (3) coarse spatio-temporal scheduling that ignores heterogeneous switch and link costs, causing excessive overhead and unbalanced loads. To address this, we propose BRIGHT, a Bayesian reinforcement-learning framework for intelligent traffic monitoring in OpenFlow networks. BRIGHT maintains lightweight Gaussian posteriors for per-flow rates and their uncertainty, uses stability and entropy indicators to categorize flows, and employs a linear contextual bandit with Bayesian Thompson sampling to adaptively select monitoring templates and per-slot measurement quotas. A spatio-temporal scheduler then maps each template to concrete probing intervals and low-overhead polling points along flow paths, achieving an online trade-off between monitoring cost and estimation accuracy. We implement BRIGHT as a Ryu controller application and evaluate it on a Mininet testbed with the GEANT backbone topology, comparing against LCM, AdaptMon, and OpenTM under stationary and bursty traffic. Experiments show that BRIGHT substantially reduces monitoring messages and control-plane load, improves effective link utilization, and still maintains or even improves TM estimation accuracy.

Keyword—Software-Defined Networking (SDN), Traffic Monitoring, Bayesian Reinforcement Learning, Contextual Bandits

Hao Gong is currently pursuing a Master's degree at the School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences. His research interests include Software-Defined Networking, Reinforcement Learning, and Artificial Intelligence.

Jun Chen is currently a researcher at the University of Chinese Academy of Sciences, and her research interests include computer networks and electronic information.

Xiaodong Zhu is currently working as an associate researcher at the University of Chinese Academy of Sciences, and her research interests include software-defined networks and signal processing.