

Research on the Method of Landform Feature Recognition based on Deep Learning

Zeyu Jin^a, Lele Cui^a, Zhifa Wang^a, Zien Zhang^a, Chang Liu^a, Guangwei Zhang^{a, b, *}

^a School of Mechatronical Engineering, Beijing Institute of Technology, China

^b Science and Technology on Electromechanical Dynamic Control Laboratory, China

* Corresponding author

758743342@qq.com, 3120240256@bit.edu.cn, 3397073817@qq.com, 1732955442@qq.com, liuchang0118@bit.edu.cn, 6120240118@bit.edu.cn

Abstract—This research proposes a deep learning-based method for geomorphic feature recognition, aiming to achieve high-precision classification of complex geomorphic echo signals through deep learning techniques. First, a GAN-based geomorphic feature recognition model is established, incorporating a multi-layer fully connected discriminator and generator, optimized for generalization capability via adversarial training. To address the small-sample problem, an improved generative adversarial network is employed for data augmentation and feature alignment, generating typical geomorphic power spectra with echo characteristics. A three-layer neural network classification module is designed to identify different geomorphic types, while techniques such as cosine annealing, attention mechanisms, label smoothing, and global normalization are applied to mitigate overfitting and gradient oscillation. Finally, the adversarial capability of the proposed GAN is validated using a simulated dataset, with the data split into 7:3 training and testing sets to evaluate the model's classification performance. The results demonstrate that the proposed method achieves over 90% recognition accuracy for various geomorphic types on both simulated and real-world datasets, confirming the effectiveness of the GAN-based geomorphic feature recognition model.

Keyword—Deep Learning , Generative Adversarial Network , Geomorphic Feature Recognition , Data Augmentation , Classification Accuracy

Zeyu Jin received the BS degree in Beijing Institute of Technology in 2025. Now he is a master degree candidate in School of Mechatronical Engineering, Beijing Institute of Technology. His research interests include signal processing, signal classification, machine learning and so on.

Lele Cui received the BS degree in Mechatronical Engineering from Beijing Institute of Technology in 2024, having graduated as an undergraduate student. He is now pursuing his MS degree in School of Mechatronical Engineering at the same institution. His research interests include wireless network simulation and wireless communication.

Zhifa Wang received the BS degree from Beijing Institute of Technology in 2025. He is currently pursuing a Master's degree in the School of Mechatronical Engineering at Beijing Institute of Technology. His research interests include signal processing, signal classification, object recognition, and related applications in intelligent systems.

Zien Zhang obtained his Bachelor of Engineering degree from China Agricultural University in 2024. Currently, he is a master's student at the School of Mechatronical Engineering, Beijing Institute of Technology. His research interests include signal processing, target detection, and fuze jamming.

Chang Liu received the B.S. degree in Mechatronical Engineering from the Beijing Institute of Technology, Beijing, China, in July 2025. She is currently pursuing the M.S. degree with the School of Mechatronical Engineering, Beijing Institute of Technology. Her research interests include deep learning, signal classification, and signal processing.

Guangwei Zhang received Ph.D. degree in school of Mechatronical Engineering from Beijing Institut in 2021. He is currently pursuing the postdoctor in Beijing Institute of Technology, Beijing, China. He is working radar signal processing and intelligent detection, network simulation and emulation and so on.